Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

Competing reactions of selected atmospheric gases on Fe₃O₄ nanoparticles surfaces

Nermin Eltouny^a and Parisa A. Ariya^{a,b*}

^aDepartment of Chemistry, McGill University

^bDepartment of Atmospheric and Oceanic Sciences, McGill University, Montreal

801 Sherbrooke West, Montreal, QC, Canada H3A 2K6

*Corresponding author email: parisa.ariya@mcgill.ca

Supporting Information

X-ray diffraction (XRD)

Details on instrumental conditions for data collection acquired on a Siemens D5000 diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å) are presented in Table S1.

XRD parameters	2θ(°)	Δ2θ (°)	$\Delta t(sec)$
Sadsorption	20-70	0.5	10
S _{reduced}	10-70	0.5	10
Soxidized	10-70	0.1	10

Table S1.XRD data acquisition parameters for Fe_3O_4 NPs

Analyses by GC-MS and GC-FID of a typical flask consisting of toluene and NO₂

The GC-MS spectra in Figure S1 show that the blanks for the flasks, with only dry air, contained peaks at retention times of 9.31 min (m/z = 73, 267, 268, 355, 356- cyclopentasiloxane) and 11.94 min (m/z = 73, 147, 251, 341, 429-cyclohexasiloxane) attributed to organosiloxanes. Organosiloxanes are due to the deactivating agent (Glassclad 18, UCT) used to coat the glassware. The organosiloxane peaks remained constant for the blank (dry air only), toluene and toluene + NO₂ flasks indicating that a reaction had not occurred with either the toluene or the NO₂. The CAR/PDMS SPME fibre consists of a fused silica fibre coated with PDMS in which porous carbon particles are embedded rendering it suitable for the sampling of volatile organic compounds ¹. including aldehydes, ketones and carboxylic acids ². Organics were not detected in the blank flasks within the detection limits of the SPME (low ppbv) and GC-MS; therefore it is unlikely that organic residues were left on the walls of the flasks in quantities sufficient to impact the reaction.

Figure S1. Overlay of blank SPME fibre, blank flask containing dry air, flask containing toluene and flask containing toluene + NO₂.

Data acquisition using gas chromatography and solid phase micro-extraction (spme)

The initial GC-FID oven temperature was 50 °C; then a ramp rate of 20 °C.min⁻¹ was applied and the temperature reached 110 °C, which was held for 2.2 minutes. Sampling was achieved using SPME with an extraction time of *c.a.*, 1 minute, which was injected in the GC port at 290 °C for 3 minutes. For the GC-MS data acquisition, the same temperature program was applied with the exception of the higher final temperature, which was set at 220 °C.

XPS spectra curve fitting and peak assignments

The Avantage Software (Thermo scientific) was used to deconvolute the high resolution spectra for Fe2p, C1s, and O1s core lines. Shirley and SMART backgrounds were subtracted from the C1s and O1s, and from the Fe2p, respectively. All spectra were charge corrected relative to adventitious carbon at 285.0 eV.³ Peaks below 285.0 eV account for differential charging across the sample. The C1s spectra for S_{reduced} and S_{oxidized} are shown in Figure S1 and S2, respectively.

Figure S2. XPS C1s spectra for S_{reduced}.

The Fe2p_{3/2} spectra were deconvoluted into 5 peaks corresponding to one peak for Fe²⁺ (octahedral), and two peaks for Fe³⁺ (octahedral and tetrahedral), and two satellite peaks for Fe²⁺ and Fe³⁺ fixed at + 5.9 and 8.0 eV, respectively, which compare well with the reported value of 6.0 eV⁴ and 8.0 eV.⁴ To validate the fitted peaks, the atomic percent contributions of carbon-oxygen contributions in the C1s spectra were compared with those observed in the organic oxygen-carbon components of the O1s spectra, while the Fe²⁺ and Fe³⁺ contributions in the Fe2p_{3/2} spectra were compared with those assigned to O-Fe and HO-Fe components of the O1s spectra. An example of element corroboration is given in Table S2. The full width half maxima for the fitted peaks of C1s, O1s, and Fe2p were fixed at 1.6 eV, 1.8 eV, and 3.4 eV, respectively, and are based on values determined in a previous study carried

out on the same instrument.⁵ The L:G mixing ratios for curve fitted peaks were fixed at 40. For the purpose of clarity in the figures 5 and 7, the corresponding $Fe2p_{1/2}$ doublet for each fitted peak of the $Fe2p_{3/2}$, arising from spin-orbit splitting and appearing above 718.7 eV are not labelled. Atomic percent contributions are calculated from the fitted peaks of $Fe2p_{3/2}$ due to the larger intensity ($Fe2p_{3/2}:Fe2p_{1/2}$ is 2:1).

Element Peak Deconvolution	Binding Energy (eV)	FWHM (eV)	Atomic %
Carbon: C1s			
Differential charging	283.8	16	42
C-C	285.0	1.6	9.5
C-0	286.5	1.0	2.6
C=O	288.3	1.0	1.21
Carbon-Oxygen contributions: $2.6+1.2 = 3.8 \%$	200.5	1.0	1.21
Oxygen: O1s			
Nonequivalent oxygen	528.1	1.8	0.6
O-Fe	529.9	1.8	35.7
HO-Fe	531.4	1.8	89
O-C	533.3	1.8	2.9
Oxygen-Carbon contributions: 2.9 %		1.0	2.9
Oxygen-Iron contribution = $35.7 + 8.9 = 44.6\%$			
Iron: Fe2p _{3/2}			
Fe^{2+} (oct)	710.06	3.4	8.5
Fe^{3+} (oct)	710.66	3.4	10.0
Fe^{3+} (thd)	713.46	3.4	5.9
Fe ²⁺ Satellite	716.06	5.3	1.7
Fe ³⁺ Satellite	718 7	53	8.0
Iron-Oxygen contributions:	110.7	0.0	0.0
Fe-O = 8.5+1.7 = 10.2			
$Fe_2O_3 = 10+5.9+8 = 24$			
Fe-O total contribution = $10.2 + 24*1.5 = 46.2$ %			

Table S2. XPS peak fittings for C1s, O1s, and $Fe2p_{3/2}$ spectra for $S_{oxidized}$ fraction (c) toluene + NO₂

Error calculation on ratios obtained from XPS and TOF SIMS

The error on the ratios from XPS were determined using the corrected area under each peak assigned to species i and j, A_i and A_j , calculated by the AvantageTM software⁶ and given by equation S1:

$$A_i = \frac{I_i}{T(E_i)R_i E_i^n} \tag{S1}$$

Where I_i is the intensity for species i, the kinetic energy, E_i , instrument transmission function, $T(E_i)$, relative sensitivity factor, R_i , and escape depth component, n. The error, σR , is calculated using the method of propagation of errors⁷ using equation S2, :

$$\sigma R = R \sqrt{\left(\frac{\sigma A_i}{A_i}\right)^2 + \left(\frac{\sigma A_j}{A_j}\right)^2}$$
(S2)

where $\sigma A_{i,j'}$ is the square root of A_i . The errors on the ratios from TOF SIMS were calculated using the equation S2 and by replacing the area with ion intensity.

Examples of other adsorption experiments

Figure S4. Experimental adsorption isotherms of toluene on Fe_3O_4 NPs NPs in dry air alone and in the presence of NO₂ at the low (left graph) and high (right) concentration range.

Figure S5. Experimental adsorption isotherms of toluene on Fe_3O_4 NPs NPs in dry air alone and in the presence of NO₂ at the low (left graph) and high (right) concentration range. Error bars represent standard errors calculated by the propagation of error during preparation and analyses.

Table S3.Adsorption models and their respective assumptions

Model	Equation	Parameter description	Applicability/Assumptions
Langmuir ⁸	$n_{ads} = q_m \frac{bC_{eq}}{1 + bC_{eq}}$, $b = \frac{s_0 e^{\frac{q_{st}}{kT}}}{v\sigma\sqrt{2\pi m kT}}$	$\begin{array}{l} q_m: \mbox{ monolayer adsorption capacity,} \\ s_0: \mbox{ initial sticking probability} \\ q_{st}: \mbox{ isosteric heat of adsorption} \\ \sigma: \mbox{ density of adsorption sites} \\ v: \mbox{ frequency factor} \end{array}$	Homogeneous energy sites ⁹ No lateral interaction
Freundlich ¹⁰	$\frac{1}{n}$	K _F : Freundlich constant	Heterogeneity of energy sites
	$n_{ads} = K_F C_{eq}^{n}$	n: heterogeneity parameter	No lateral interactions
Toth ¹¹	$n_{ads} = q_m \frac{QtC_{eq}}{\left(Kt + C_{eq}^{t}\right)^{1/t}}$	Qt and Kt: Toth constants t: heterogeneity parameter ¹² (0-1)	Heterogeneity of sites, ⁹ lateral interactions Reduces to Langmuir ¹³ for t=1
Redlich- Peterson	$K_r C_{eq}$	Kr and Ar: RP constants	Homogeneous and heterogeneous
(RP) ¹⁴	$n_{ads} = \frac{1}{\left(1 + A_r C_{eq}^{g}\right)}$	b: 0-1	Reduces to Freundlich at high Ceq ¹⁵
Sips	$n_{ads} = \frac{K_s A_s C_{eq}^{s}}{(1 - 1)^{s}}$	Ks: max ads cap As: Sips constant	Heterogeneous energy sites, ¹⁶ no lateral interaction
	$\left(1 + A_S C_{eq}^{-S}\right)$	s: isotherm exponent (-1-+1)	Reduces to Langmuir at high Ceq ¹⁷
			Reduces to Freundlich at low Ceq ¹⁸
Langmuir Dissociative adsorption (LD) ¹⁹	$n_{ads} = q_m \frac{\sqrt{b_2 C_{eq}}}{1 + \sqrt{b_2 C_{eq}}}, b_2 = \frac{s_0 e^{\frac{q_{st}}{kT}}}{\nu \sigma^2 \sqrt{2\pi m kT}}$		Recombinative 2 nd desorption Energetically heterogeneous sites present in equal concentration ¹⁹
Langmuir Dissociative adsorption (LDQ) ¹⁹	$n_{ads} = q_m \frac{1 + 2bC_{eq} - \sqrt{1 + 4bC_{eq}}}{2bC_{eq}}$		Quasi 1 st order desorption-dissociated species are immobile
Langmuir Dissociative and mobile adsorption (LDM) ¹⁹	$q = q_m \frac{1 + bC_{eq} - \sqrt{[1 - bC_{eq}]^2 + 4KbC_{eq}}}{2(1 - K)}$	p_d ': desorption probability at occupied site p_d : desorption probability at unoccupied site	Mobile adsorption

$$K = \frac{p_d}{p_a + p_d}$$

p_a: adsorption probability

Table S4.Fitting parameters for adsorption models of the adsorption of toluene on Fe_3O_4 NPs with and without NO₂ in air.

Isotherm model	RP			LD		LD	Q			LDM		
Toluene												
	K _r (× 10 ⁵)	A _r	g (× 10 ⁻¹)	b	Q _m (× 10	o-1) b (>	(10 ⁸)	Q _m (×	10 ⁻⁴)	b (x 10 ⁶)	$Q_{m}(x 10^{-2})$	K (× 10 ³)
Values	8.6	1.2×10 ⁵	4.6	732	1.05	1.45		7.7		2.38	8.0	5.65
ERR _{SD}	3.0	2.9×10 ⁴	0.21	0	0.082	0.17	8	0		0	0	0.235
Adj. R ²	0.998			0.947		0.9	75			0.997		
Toluene, NO ₂												
	K _r (× 104)	$A_{r}(\times 10^{3})$	g	b	Q _m (× 1	o-2) b (>	× 105)	Q _m (×	(10 ⁻²)	b (× 10 ⁸)	Q _m (× 10 ⁻⁴)	K (× 10 ⁻¹)
Value	1 7	16	0.45	407	7 10	1 70	`	2 00		1 22	1.0	1 76
Isotherm model	Freundlic	h	Langmu	ıir		Toth				Sips		
Toluene	1.3	4 •4	U	· ·	1.31	0.00	,	U		0	0	J·4
<u>-Adj. K²</u>	— 0.977 —Кт	n (x 10 ⁻²)	<u> </u>	-0.764 	(x 10⁻⁴)	0.99	96 <u></u>		t (x 10 ⁻²	0.899	$-3) = A_{-}(x + 10^{4})$	$\frac{S(x 10^{-2})}{x^{10}}$
Values			- 9-		(**10')		(- 96	, , , , , , , , , , , , , , , , , , , ,	6
values	20.1	100	1.83	5.39)	0.918	0.194	4	9.92	1.80	3.37	65.2
ERR _{SD}	4.57	3.28	0.619	0.73	8	2.68	0.130)	3.20	0.550	2.49	2.21
Adj. R ²	0.996		0.963			0.998				0.998		
Toluene, NO₂												
	K_F (× 10 ²)	n (× 10 ⁻²) b (× 107)	$\mathbf{Q}_{\mathbf{m}}$	(× 10 ⁻³)	Q _t (× 10 ⁻²	3) K _t ((× 10 ⁻⁵)	t	Ks	As	S (× 10 ⁻²)
Value	3.75	127	1.29	1.63		2.50	1.12		0.718	1.43	2.65×10^{2}	78.8
ERR _{SD}	2.23	5.15	1.16	1.19		1.80	0.74	40	0	1.37 × 10	2.54×10^5	8.18
Adj. R ²	0.987		0.965			0.969				0.986		

Figure S6. Comparison of isotherms (bottom) fitted using different models and respective residuals over low (top) and high (middle) concentration range for the adsorption of toluene on Fe_3O_4 NPs with (right) and without NO₂ (left) in air.

Details on the calculations used in the Akaike criterion test for the comparison of adsorption models

The small-sample corrected AIC values for each model are calculated according to equation 1 and the relative likelihood of the model with lower AIC value is calculated using equation 2 (OriginPro 8° ²⁰)

$$AIC = Nln\left(\frac{RSS}{N}\right) + 2K + \frac{2K(K+1)}{N-K-1}, where \frac{N}{K} < 40$$
(1)
$$Relative \ likehood = \exp\left(-\frac{1}{2}\Delta i\right), where \ \Delta i = abs(AIC(RP)) - abs(AIC(F))$$
(2)

Figure S7. Positive mode TOF SIMS m/z 43 total ion intensities for fractions of Fe_3O_4 NPs batch $S_{oxidized}$

Figure S8. Positive mode TOF SIMS m/z 77 total ion intensities for fractions of Fe_3O_4 NPs batch $S_{oxidized}$

Figure S9. Positive mode TOF SIMS m/z 91 total ion intensities for fractions of Fe_3O_4 NPs batch $S_{oxidized}$

Figure S10. Positive mode TOF SIMS m/z 105 total ion intensities for fractions of Fe₃O₄ NPs batch $S_{oxidized}$.

Table S5.	Assignments of binding energies (in eV) and ratios calculated from high resolution fitted
	spectra of Fe2p and O1s XPS for Fe ₃ O ₄ NPs exposed to 0.65 ppmv of NO ₂ alone in dry
	air.

Assigned Species, Reported literature BE	S _{oxidized} NO ₂					
OH (nonequivalent):-1.6, O ²⁻ (undercoordinated):-1 (rel. Fe-O) ²¹						
O-Fe: 529.9 ± 0.4^5 , 530.1 ± 0.2^4						
HO-Fe, Adsorbed O, O=C: 531.4 ± 0.2^{4} , 531.6^{22} , $531.3 531.9-532.8^{23}$						
NO ₃ /NO ₂ (on TiO ₂):532.5/533 ²⁴ O-C: 532.4-533.5 ²³						
H ₂ O on Fe ₃ O ₄ : 532.7 \pm 0.1 γ -Fe ₂ O ₃ : 533.3 \pm 0.1 ²⁵ , H ₂ O: 534 ²¹	533.2					
Fe^{2+}/Fe^{3+}	0.31 ± 2.2					
	× 10 ⁻²					
Fe/O	0.60 ± 2.2					
	×10-2					
O > 531.2 eV /O (total)	0.12 ± 8.3					
	$\times 10^{-3}$					
0 > 521.2 eV /Ee O (non equiv. EeOH and EeO)	0.13 ± 8.8					
0 > 351.2 ev/re-O (non equiv., reOn and reO)	× 10 ⁻³					
EaOU (including pack at 528 aV)/EaO						
reon (including peak at 528 eV)/ reo ×						

Gas phase qualitative and quantitative analyses by GC-MS and GC-FID for flasks containing toluene and NO₂ only

To ensure that gas phase reactions between toluene and NO₂ did not occur, the gas phase was analyzed with GC-MS and GC-FID for the two systems (toluene and toluene + NO₂). The GC-MS chromatograms in Figure S1 show that new peaks do not form when NO₂ is added to the system. We quantified the toluene concentration using the GC-FID detection system because it is more accurate than the GC-MS (run in Scan mode). In the absence of NPs, the peak area of toluene detected should be proportional to the concentration of toluene (amount of toluene injected in the flask). The difference between the concentrations of toluene and in the presence of NO₂ is within the allowable error of uncertainty (10 %). The linear fits show that the slopes for both systems are within the 10% uncertainty. These results indicate that toluene does not react with NO₂ in the gas phase under our experimental conditions, outside the margin of instrumental uncertainties. If a reaction had occurred in a significant manner, a decrease in the concentration of toluene would have been expected and new peaks detected, which is not the case.

A note on experimental uncertainties on Fe²⁺/Fe³⁺ ratios in XPS studies

XPS experiments for the adsorption of toluene to magnetite NPs of in dry air show a change in the $Fe^{2+/}Fe^{3+}$ ratio that is within experimental uncertainties, i.e., ± 0.02 . We have systematically observed²⁶ an increase in the $Fe^{2+/}Fe^{3+}$ for this specific system constituted of toluene, dry air and Fe_3O_4 NPs ⁺. The sample S_{oxidized} exposed to 100 ppmv of toluene only in dry air reveals the same increasing trend in the $Fe^{2+/}Fe^{3+}$. Therefore, this increase is likely real albeit small when compared to samples tested in our

previous study shown in the figure below. It is possible that the change is not as high as what was observed for other samples due to the higher initial oxidation level of $S_{reduced}$, which is closest to the stoichiometric ratio value of 0.50 for Fe₃O₄.

References

- (1) Mani, V. In *Applications of Solid Phase Microextraction*; Pawliszyn, J., Ed.; The Royal Society of Chemistry: 1999, p 57.
- (2) Natera Marín, R.; Castro Mejías, R.; de Valme García Moreno, M.; García Rowe, F.; García Barroso, C. *Journal of Chromatography A* **2002**, *967*, 261.
- (3) Briggs, D. *Handbook of x-ray and ultraviolet photoelectron spectroscopy*; Heyden: London; Philadelphia, 1977.
- (4) Mills, P.; Sullivan, J. L. J. Phys. D: Appl. Phys. 1983, 16, 723.
- (5) Poulin, S.; França, R.; Moreau-Bélanger, L.; Sacher, E. J. Phys. Chem. C 2010, 114, 10711.
- (6) Thermo Fischer Scientific Inc.; Thermo Fischer Scientific Inc: 2013.
- (7) Taylor, J. R. An introduction to error analysis : the study of uncertainties in physical measurements; University Science Books: Mill Valley, Calif., 1982.
- (8) Langmuir, I. J. Amer. Chem. Soc. 1918, 40, 1361.
- (9) Dąbrowski, A. Adv. Colloid Interface Sci. 2001, 93, 135.
- (10) Freundlich, H. Trans. Faraday Soc. 1932, 28, 195.
- (11) Rudzinski, W.; Everett, D. H. Adsorption of gases on heterogeneous surfaces; Access Online via Elsevier, 1991.
- (12) Tóth, J. Adv. Colloid Interface Sci. 1995, 55, 1.
- (13) Kim, J.-H.; Lee, S.-J.; Kim, M.-B.; Lee, J.-J.; Lee, C.-H. *Industrial & Engineering Chemistry Research* 2007, *46*, 4584.
- (14) Redlich, O.; Peterson, D. L. J. Phys. Chem. 1959, 63, 1024.
- (15) Jossens, L.; Prausnitz, J. M.; Fritz, W.; Schlünder, E. U.; Myers, A. L. Chem. Eng. Sci. 1978, 33, 1097.
- (16) Jaroniec, M. Surf. Sci. 1975, 50, 553.
- (17) Foo, K. Y.; Hameed, B. H. Chem. Eng. J. 2010, 156, 2.
- (18) Sips, R. J. Chem. Phys. 1950, 18, 1024.
- (19) Ranke, W.; Joseph, Y. Phys. Chem. Chem. Phys. 2002, 4, 2483.
- (20) OriginLab Corporation.
- (21) Kendelewicz, T.; Kaya, S.; Newberg, J. T.; Bluhm, H.; Mulakaluri, N.; Moritz, W.; Scheffler, M.; Nilsson, A.; Pentcheva, R.; Brown, G. E. J. Phys. Chem. C 2013, 117, 2719.
- (22) Grosvenor, A. P.; Kobe, B. A.; McIntyre, N. S. Surf. Sci. 2004, 565, 151.
- (23) Beamson, G. B. D. *High resolution XPS of organic polymers : the Scienta ESCA300 database*; Wiley: Chichester [England]; New York, 1992.
- (24) Haubrich, J.; Quiller, R. G.; Benz, L.; Liu, Z.; Friend, C. M. Langmuir 2010, 26, 2445.
- (25) Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Appl. Surf. Sci. 2011, 257, 2717.
- (26) Eltouny, N. A.; Ariya, P. A. Ind. Eng. Chem. Res. 2012, 51, 12787.