Supporting Information

Protonation induced shifting of electron-accepting center in intramolecular charge transfer chromophores and theoretical study[†]

Tao Tang,^a Hong Chi,^c Tingting Lin,^b FuKe Wang,^{*b,c} and Chaobin He,^{*a,b}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Supporting Characterizations

Instrumentation. ¹H-NMR (400.13 MHZ) and ¹³C-NMR (100.61 MHZ) spectra were recorded on Bruker DRX 400-MHZ NMR spectrometer in the solvent of CDCl₃ at room temperature. Tetramethylsilane (TMS) was used as an internal standard to express chemical shift. Mass spectra were measured on a Bruker micrOTOFQII. UV-vis-NIR spectra were conducted on Agilent Cary 5000. Electrochemistry was performed with distilled solvents and recrystallized electrolytes using a three-electrode cell with a platinum flag as the counter electrode, a silver wire pseudo-reference electrode calibrated using a 5 mM solution of Fc/Fc⁺ in 0.1 M electrolyte solution, and a an ITO-coated glass slide ($7 \times 40 \times 0.7$ mm, 20Ω cm⁻¹, Delta Technologies, Ltd) as the working electrode. Cyclic voltammetry (CV) measurements were conducted on Autolab PGSTAT 30 electrochemical workstation.

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 pp

Fig. S1 NMR spectra of monomers and polymer. (a) and (b), ¹H-NMR and ¹³C-NMR spectra of monomer **BTAz-1**; (c) and (d), ¹H-NMR and ¹³C-NMR spectra of monomer **BTAz-2**; (e) and (f), ¹H-NMR and ¹³C-NMR spectra of monomer **5**-bromo-3-dodecyl-2-(3-(3-dodecylthiophen-2-yl)azulen-1-yl)thiophene **5**; (g) and (h), ¹H-NMR and ¹³C-NMR spectra of monomer **BTAz-3**; (i) and (j), ¹H-NMR and ¹³C-NMR spectra of monomer **BTAz-4**.

Fig. S2 UV-vis spectrum of BTATB in chloroform.

Fig. S3 Cyclic voltammograms of **BTAz-1** (a and b), **BTAz-2** (c and d), **BTAz-3** (e and f) and **BTAz-4** (g and h) in dichloromethane (a, c, e and g) and dichloromethane/TFA (v/v:8.5/1.5; b, d, f and h). CV experiments (a-h) performed with 0.1 mM oligomer and 0.1 M tetrabutylammonium perchlorate (scan rate 25 mV/s).

Fig. S4 UV-vis-NIR spectrum of BTAzs under different TFA concentration in chloroform solution: (a): BTAz-2; (b) BTAz-3; (c) BTAz-4.

Fig. S5 Spatial distributions of the calculated HOMOs and LUMOs of model compounds **BTAz-1** (a), **BTAz-2** (b), and **BTAz-4** (c) at different degree of protonation: neutral and protonation.

Fig. S6 UV-Vis spectra of 2,1,3-benzothiadiazole in chloroform (dark line); chloroform/TFA (v/v: 7/3, red line) and chloroform/sulfuric acid (v/v: 7/3, blue line).

Cartesian coordinates of the DFT optimized ground-state

Cartesian coordinates of the DFT optimized ground-state of BTAz-1

С	-2.44847	-0.87882	0.605565	С	4.941283	-1.10619	-0.3267
С	-1.20419	3.510492	0.37495	С	3.681084	-0.46385	0.018284
С	0.000007	4.109789	0.000001	С	-2.55622	-1.91411	1.517202
С	1.204204	3.510485	-0.37495	С	-3.79356	-2.54112	1.852378
С	1.522541	2.151277	-0.43728	С	-4.98093	-2.1572	1.285319
С	0.725357	1.040488	-0.1704	С	-4.94129	-1.10617	0.326703
С	-0.72535	1.040493	0.1704	С	-3.68109	-0.46385	-0.01829
С	-1.52253	2.151282	0.437281	Ν	-3.81057	0.481142	-0.95747
С	-1.13386	-0.31876	0.256345	S	-5.40715	0.542306	-1.34591

С	-4E-06	-1.11043	0.000003	Ν	-5.9937	-0.62536	-0.34752
С	1.133859	-0.31877	-0.25634	Ν	3.810576	0.481153	0.957454
Н	-2.0107	4.191694	0.636388	S	5.407152	0.542324	1.345875
Н	0.000011	5.198651	0.000001	Ν	5.9937	-0.62535	0.347502
Н	2.010712	4.191686	-0.63639	Н	1.654711	-2.25642	-2.01712
Н	2.545022	1.930113	-0.72758	Н	3.781227	-3.34119	-2.58759
С	-2.54501	1.930122	0.727579	Н	5.927351	-2.62455	-1.53413
С	2.44846	-0.87883	-0.60556	Н	-1.65473	-2.25639	2.017155
С	2.556213	-1.91414	-1.51718	Н	-3.78125	-3.34114	2.587634
С	3.793549	-2.54116	-1.85234	Н	-5.92736	-2.62451	1.534155
С	4.980921	-2.15723	-1.2853	Н	-5E-06	-2.19544	0.000004

Cartesian coordinates of the DFT optimized ground-state of BTAz-2

С	-6.35522	0.348308	-0.58816	S	3.799919	-0.70561	0.590867
С	-4.96206	-0.07338	-0.46508	Н	4.873597	1.739366	-1.85009
С	-4.34201	-1.0948	-1.15719	С	2.140733	2.383061	-1.48266
С	-2.96004	-1.26959	-0.87241	С	2.57201	3.785768	-1.00839
С	-2.50599	-0.35743	0.067449	С	1.760531	4.913025	-1.65885
S	-3.79992	0.70561	0.590867	С	2.181531	6.313217	-1.19391
Н	-4.8736	-1.73936	-1.8501	Н	2.22174	2.338403	-2.57856
С	-2.14073	-2.38306	-1.48267	Н	1.082103	2.239044	-1.24468
С	-2.57201	-3.78577	-1.00839	Н	3.63984	3.933508	-1.2227
С	-1.76053	-4.91302	-1.65885	Н	2.470741	3.838287	0.084175
С	-2.18153	-6.31322	-1.19391	Н	0.692401	4.763832	-1.44296
Н	-2.22174	-2.3384	-2.57856	Н	1.860837	4.848044	-2.75283
Н	-1.0821	-2.23904	-1.24469	Н	3.252512	6.457367	-1.40075
Н	-3.63984	-3.93351	-1.22269	Н	2.072402	6.380709	-0.10138
Н	-2.47073	-3.83828	0.084174	С	1.382404	7.444423	-1.85403
Н	-0.6924	-4.76383	-1.44297	С	1.80455	8.844521	-1.39058
Н	-1.86084	-4.84804	-2.75283	С	1.012082	9.977121	-2.05606
Н	-3.25251	-6.45737	-1.40074	С	1.4409	11.37153	-1.58784
Н	-2.07239	-6.38071	-0.10138	Н	1.491828	7.375709	-2.94677
С	-1.3824	-7.44442	-1.85404	Н	0.311419	7.301166	-1.64745
С	-1.80455	-8.84452	-1.39058	Н	2.876946	8.986352	-1.59241
С	-1.01208	-9.97712	-2.05607	Н	1.690405	8.916072	-0.29849
С	-1.4409	-11.3715	-1.58784	Н	-0.0593	9.836656	-1.85385
Н	-1.49184	-7.37571	-2.94677	Н	1.126566	9.905984	-3.14719
Н	-0.31142	-7.30116	-1.64747	Н	0.858363	12.15743	-2.08219
Н	-2.87694	-8.98635	-1.5924	Н	2.500273	11.55467	-1.80635
Н	-1.69039	-8.91607	-0.29849	Н	1.303047	11.48583	-0.50548
Н	0.059303	-9.83665	-1.85387	С	6.355217	-0.34831	-0.58816
Н	-1.12658	-9.90598	-3.1472	С	7.145805	0.055451	-1.65369
Н	-0.85836	-12.1574	-2.08219	С	8.515399	-0.30738	-1.79494
Н	-2.50027	-11.5547	-1.80634	С	9.160123	-1.10938	-0.88752
Н	-1.30303	-11.4858	-0.50548	С	8.402783	-1.57747	0.221014
С	-1.23389	-0.2674	4.416549	С	7.00578	-1.2021	0.375432
С	-1E-06	-2E-06	5.014197	С	-7.14581	-0.05545	-1.65369

С	1.233888	0.267393	4.416549	С	-8.5154	0.307375	-1.79494
С	1.556331	0.305171	3.056371	С	-9.16012	1.10938	-0.88752
С	0.736365	0.115421	1.947022	С	-8.40278	1.577466	0.221015
С	-0.73637	-0.11542	1.947022	С	-7.00578	1.202099	0.375431
С	-1.55633	-0.30517	3.056371	Ν	-6.43621	1.725183	1.464617
С	-1.15044	-0.1692	0.58698	S	-7.59137	2.620235	2.219816
С	0	0	-0.20766	Ν	-8.85465	2.374801	1.197423
С	1.150437	0.169198	0.586981	Ν	6.436208	-1.72518	1.464617
Н	-2.05935	-0.45865	5.098262	S	7.591369	-2.62024	2.219816
Н	-1E-06	-2E-06	6.10312	Ν	8.854647	-2.3748	1.197422
Н	2.059343	0.45865	5.098263	Н	6.704471	0.668841	-2.43228
Н	2.600396	0.511757	2.831513	Н	9.054003	0.06401	-2.66248
Н	-2.6004	-0.51176	2.831512	Н	10.20059	-1.39548	-0.99264
С	4.962064	0.073382	-0.46508	Н	-6.70447	-0.66884	-2.43228
С	4.342013	1.094806	-1.15719	Н	-9.05401	-0.06401	-2.66248
С	2.960042	1.269592	-0.8724	Н	-10.2006	1.395479	-0.99264
С	2.505991	0.357433	0.06745	Н	0	0.000001	-1.29169
C				61			
Cartesian	coordinates of the l	JF I optimized	l ground-state	e or I	51 AZ-3		
Ν	1.243697	-1.25958	-0.15913	Н	8.906459	-1.35218	5.620416
С	0.722784	-0.03157	-0.09291	С	-2.91419	1.240454	0.385147
С	-0.72279	-0.03157	0.092826	С	-3.68287	2.362089	0.635709
Ν	-1.24371	-1.25958	0.158999	С	-5.07762	2.126613	0.767926
S	-1.1E-05	-2.32099	-8.9E-05	С	-5.39376	0.785182	0.617169
С	-1.47092	1.193302	0.189632	S	-3.95481	-0.17058	0.30825
С	-0.7009	2.345665	0.08528	Н	-3.25686	3.35422	0.745045
С	0.700913	2.345663	-0.08527	С	-6.05393	3.22452	1.120225
С	1.470921	1.193299	-0.18967	С	-5.8993	3.731116	2.568803
Н	-1.19092	3.312466	0.133904	С	-6.87609	4.861471	2.905927
Н	1.19094	3.312462	-0.13384	Н	-5.91785	4.071128	0.431695
С	2.914194	1.24045	-0.38518	Н	-7.08053	2.871957	0.978781
С	3.682871	2.362083	-0.63575	Н	-4.86783	4.072971	2.728471
С	5.077621	2.126608	-0.76795	Н	-6.05127	2.888553	3.255676
С	5.393766	0.785178	-0.61718	Н	-7.91656	4.535059	2.788076
S	3.954806	-0.17058	-0.30827	Н	-6.72472	5.726981	2.248781
Н	3.25686	3.354212	-0.7451	С	-6.70401	-2.71262	3.185269
С	6.053931	3.224512	-1.12025	С	-7.89612	-3.44025	3.218975
С	5.89932	3.731095	-2.56883	С	-9.06834	-3.25663	2.481519
С	6.876116	4.861448	-2.90596	С	-9.35625	-2.272	1.531307
Н	5.917846	4.071126	-0.43173	С	-8.55103	-1.24075	1.055732
Н	7.080533	2.871953	-0.97879	С	-7.13064	-0.96434	1.416783
Н	4.86785	4.072947	-2.72851	С	-6.36698	-1.62185	2.377496
Н	6.051304	2.888526	-3.2557	С	-6.70997	0.145304	0.633086
Н	7.916586	4.535038	-2.78809	С	-7.81034	0.542443	-0.15366
Н	6.72474	5.726964	-2.24882	С	-8.93044	-0.27478	0.08541
С	6.704045	-2.71263	-3.18526	Η	-5.92759	-3.044	3.870934
С	7.896155	-3.44026	-3.21895	Н	-7.91446	-4.27086	3.922974

С	9.068363	-3.25663	-2.48148	Н	-9.86889	-3.96569	2.679562
С	9.356264	-2.27201	-1.53127	Н	-10.354	-2.31493	1.098841
С	8.551039	-1.24075	-1.0557	Н	-5.36172	-1.23068	2.518578
С	7.130656	-0.96434	-1.41677	С	-12.6685	0.291719	-1.0256
С	6.367001	-1.62186	-2.37749	С	-11.9343	0.097647	-2.1595
С	6.709974	0.145301	-0.63308	С	-10.5415	-0.14447	-1.91611
С	7.810334	0.542444	0.153678	С	-10.235	-0.13069	-0.56938
С	8.930437	-0.27478	-0.08538	S	-11.6768	0.192991	0.391152
Н	5.927634	-3.04402	-3.87093	Н	-12.3644	0.120673	-3.15625
Н	7.914506	-4.27088	-3.92294	С	-9.56285	-0.44577	-3.02644
Н	9.868923	-3.9657	-2.67951	С	-9.79484	-1.82198	-3.68233
Н	10.35399	-2.31493	-1.09879	С	-8.81527	-2.10311	-4.82567
Н	5.361739	-1.23069	-2.51858	С	-9.63623	0.332476	-3.80015
С	12.66847	0.291727	1.025661	Н	-8.53859	-0.40497	-2.64126
С	11.93423	0.097656	2.15956	Н	-10.8261	-1.87942	-4.05573
С	10.54149	-0.14447	1.916153	Н	-9.7047	-2.59982	-2.91305
С	10.23498	-0.13069	0.569418	Н	-7.77723	-2.08544	-4.47185
S	11.6768	0.192995	-0.3911	Н	-8.90652	-1.35218	-5.62039
Н	12.36437	0.120685	3.156311	Н	7.794705	1.366573	0.858121
С	9.562822	-0.44576	3.026475	Н	13.72937	0.485803	0.938827
С	9.794804	-1.82197	3.682365	Н	-7.79472	1.36657	-0.85811
С	8.815226	-2.1031	4.825702	Н	-13.7294	0.485793	-0.93875
Н	9.636192	0.332484	3.80018	Н	8.997869	-3.08645	5.273776
Н	8.538565	-0.40497	2.641288	Н	6.74888	5.20184	-3.93986
Н	10.82606	-1.87941	4.055784	Н	-6.74884	5.201872	3.939831
Н	9.704674	-2.59981	2.913084	Н	-8.99792	-3.08646	-5.27374
Н	7.777181	-2.08544	4.47187				
a							
Cartesiai	n coordinates of the I	OFT optimized	d ground-state	e of l	31Az-4		
С	1.305033	0.599774	-0.17844	S	-13.597	-0.70087	0.296129
С	1.129074	1.995461	0.046158	Н	-14.0155	-2.10597	-3.00693
С	-0.12511	2.583746	0.161712	С	-11.1928	-2.29214	-2.57606
С	-1.25713	1.750522	0.073782	С	-11.2907	-3.82114	-2.75056
С	-1.08072	0.355773	-0.15598	С	-10.2009	-4.38025	-3.66989
С	0.173688	-0.22893	-0.29544	Н	-11.248	-1.81863	-3.56744

Н

Н

Н

Η

Н

С

С

С

С

S

Н

С

-10.2067

-12.2803

-11.2252

-9.20039

-10.2624

4.994161

5.86434

7.246797

7.441912

5.897506

5.522689

8.34453

-2.04472

-4.08158

-4.29506

-4.16481

-3.94032

1.280606

2.314516

1.973089

0.645737

-0.17748

3.313284

2.991087

-2.16939

-3.14945

-1.76258

-3.27538

-4.67313

-0.06731

0.198081

0.115152

-0.22331

-0.4284

0.453339

0.315481

-0.23679

-0.07361

0.171562

-0.21688

0.08585

0.215736

0.406924

-0.49026

-0.36789

0.45709

-1.86936

-1.90335

2.688698

3.548166

2.675639

-2.62437

-3.49453

-2.63884

-0.25121

0.30198

3.021311

-2.97202

0.402318

0.518058

0.236423

1.290773

2.821588

-0.4804

1.038068

2.100267

3.932378

-1.58493

-0.78711

3.10264

-1.99283

-3.50913

С

С

S

S

С

С

0

0

Н

Н

С

С

С	0.637242	-4.04928	-3.33215	С	8.410558	4.045078	-0.8087
Н	-0.48797	-1.65355	-2.41721	С	9.513803	5.081681	-0.57741
Н	1.282267	-1.51976	-2.32826	Н	8.193941	3.505451	1.275706
Н	-0.36074	-3.93758	-1.40632	Н	9.313222	2.485721	0.382875
Н	1.524043	-3.65001	-3.8393	Н	7.439475	4.550666	-0.89462
Н	-0.23926	-3.78384	-3.93549	Н	8.57394	3.53231	-1.76544
С	-0.43221	4.748307	-0.76708	Н	10.50004	4.605044	-0.52126
С	-0.53401	6.198407	-0.31893	Н	9.355999	5.627148	0.361331
С	-0.72868	7.158449	-1.49676	С	8.829583	-1.78699	-3.78322
Н	0.418737	4.605836	-1.44792	С	9.946088	-2.60714	-3.96438
Н	-1.34336	4.433887	-1.29606	С	11.004	-2.8703	-3.09093
Н	-1.36833	6.288535	0.387931	C	11.23	-2.35219	-1.81179
Н	0 109589	7 103222	-2 20177	C	10 45454	-1 46806	-1.06686
Н	-0.80052	8 193921	-1 14793	C	9 131969	-0.89114	-1 44403
C	-4 94169	1.061095	0 16675	C	8 468689	-1 03684	-2 65961
C C	-5 78157	2 1299	-0.05487	C	8 691833	-0 10596	-0 34388
C C	-7 16721	1.85126	0.135632	C	9 691252	-0 17594	0.647503
C C	-7 39534	0 535483	0.501259	C	10 76466	-0.98648	0.233638
S	-5 87804	-0 34991	0.611218	н	8 141402	-1 73187	-4 62358
н	-5 41279	3 101578	-0.36807	н	9 999681	-3 11426	-4 92655
n C	-8 23388	2 911663	-0.00622	н	11 7608	-3 55995	-3 45762
C C	-8.13509	4 022967	1.058362	н	12 14403	-2.6871	-1 32554
C C	-9.21053	5.099519	0.885755	н	7 53/11	-0.48649	-1.52554
с u	-9.21055 8 16415	3 360656	1 00302	и П	0.638406	0.325850	1 60717
н ц	-0.10415	2 450824	-1.00392	n C	1/ 3351	1 3682	1.00/1/
н ц	-9.22301	2.430824 4.484718	1.015085	C	13 42606	-1.3082	2 763116
п u	-7.1390	4.404/10	2.054001	C	13.42090	-1.82972	2.705110
п	-0.21701	3.3083	0.05862	C	12.00833	-1.77001	2.300249
п	-10.217	4.009834	0.93602	c c	12 55792	-1.20277	0.400788
п	-9.12980	1 20025	-0.09307	ъ 11	13.33783	-0.83832	0.400788
C	-8.03815	-1.80985	4.1/1200	п	13.70051	-2.20758	5.74192 2.122492
C	-9.//2/0	-2.58077	4.455880	C	10.91303	-2.28977	5.155482 2.227024
C	-10.8981	-2.80529	3.638952	C	10.93628	-3.81938	3.327924
C	-11.1886	-2.28818	2.3/2/82	C	9.774709	-4.32098	4.190897
C	-10.4295	-1.44295	1.56/894	Н	10.92925	-1.80/31	4.121886
C	-9.06243	-0.91/96	1.84952	Н	9.964992	-2.00623	2.0038/3
C	-8.32418	-1.08308	3.01851	Н	11.89049	-4.11626	3.783454
C	-8.66569	-0.1603	0.714083	Н	10.90526	-4.30206	2.342481
C	-9./3141	-0.19675	-0.20/22	Н	8.80/39/	-4.06698	3.740593
C	-10.8063	-0.96003	0.285797	Н	9.80094	-3.8/314	5.192133
H	-7.89191	-1.77856	4.961736	Н	-15.5638	-1.117	-1.12701
H	-9.78147	-3.07854	5.404346	Н	15.41092	-1.30851	1.953627
H	-11.6561	-3.45967	4.063175	Н	9.81032	-5.40961	4.311902
H	-12.1464	-2.58862	1.95273	Н	9.544431	5.817117	-1.38922
H	-7.36372	-0.57221	3.036695	Н	1.391426	-3.80694	-1.30986
Н	-9.72349	0.295173	-1.17349	Н	0.719969	-5.14115	-3.33019
C	-14.487	-1.21807	-1.09685	Н	0.376236	6.45618	0.236142
С	-13.6582	-1.72729	-2.05409	Η	-1.64627	6.931206	-2.05312
С	-12.2719	-1.72208	-1.68604	Н	-9.12305	5.875653	1.654435

C -12.0669 -1.19641 -0.42489 H -10.2898 -5.46/32 -3.//6	С	-12.0669	-1.19641	-0.42489	Н	-10.2898	-5.46732	-3.77687
---	---	----------	----------	----------	---	----------	----------	----------

Cartosian coordinates of the DFT ontin	nized ground state of protoneted RTAz 1
Cartesian coordinates of the Dr 1 optim	nzeu ground-state of protonated DTAZ-1

С	-2.66199	-0.05019	1.294945	С	3.33488	-0.5176	0.245912
С	-1.1537	3.778062	-0.46078	С	-3.57485	-0.03284	2.323853
С	-0.06326	3.940897	-1.30839	С	-4.91953	-0.49892	2.167404
С	0.992124	3.047798	-1.5567	С	-5.37772	-0.99117	0.9736
С	1.236697	1.79423	-1.00852	С	-4.471	-1.02528	-0.1252
С	0.474407	1.093044	-0.05728	С	-3.10948	-0.5546	0.031789
С	-0.75564	1.504624	0.531723	Ν	-2.37585	-0.63975	-1.08426
С	-1.4666	2.680571	0.356097	S	-3.36801	-1.28112	-2.2361
С	-1.226	0.412868	1.480351	Ν	-4.74089	-1.46247	-1.36139
С	-0.1651	-0.63452	1.30285	Ν	3.657921	0.716999	0.653119
С	0.815927	-0.23888	0.451453	S	5.305677	0.77766	0.673199
Н	-1.86145	4.602819	-0.4309	Ν	5.65344	-0.74098	0.170156
Н	-0.02526	4.877378	-1.85923	Н	0.898213	-2.77165	-0.45278
Н	1.72706	3.388193	-2.2822	Н	2.852043	-4.18985	-0.93365
Н	2.13136	1.29154	-1.35816	Н	5.17402	-3.31988	-0.67138
Н	-2.39304	2.758493	0.921891	Н	-3.27241	0.337481	3.300543
С	2.005959	-1.03787	0.09658	Н	-5.5816	-0.4576	3.026592
С	1.890174	-2.34875	-0.32065	Н	-6.39344	-1.34833	0.844336
С	3.02399	-3.1703	-0.60311	Н	-0.18122	-1.57556	1.841199
С	4.306044	-2.7032	-0.46558	Н	-1.14569	0.808833	2.507228
С	4.48237	-1.35851	-0.0321				

Cartesian coordinates of the DFT optimized ground-state of protonated BTAz-2

С	-6.6071	-1.75816	-0.46294	Н	4.331097	1.868155	-1.58991
С	-5.22312	-1.45332	-0.09618	С	1.671798	2.781684	-1.30161
С	-4.18573	-2.34559	0.084786	С	2.224951	4.140239	-0.8219
С	-2.92927	-1.76165	0.415298	С	1.543681	5.332535	-1.50506
С	-3.02241	-0.38606	0.481636	С	2.071876	6.691329	-1.02653
S	-4.64266	0.180739	0.159788	Н	1.786564	2.715077	-2.39222
Н	-4.31335	-3.41933	-0.00076	Н	0.594242	2.749493	-1.10594
С	-1.68619	-2.59105	0.635232	Н	3.306976	4.181025	-1.00592
С	-1.09785	-3.1751	-0.66582	Н	2.099537	4.213485	0.267536
С	0.162441	-4.01542	-0.42674	Н	0.458447	5.282057	-1.32994
С	0.743249	-4.61852	-1.71241	Н	1.678664	5.25188	-2.59359
Н	-0.9152	-1.99693	1.139685	Н	3.157323	6.739389	-1.19726
Н	-1.92618	-3.41728	1.318355	Н	1.932128	6.772601	0.061782
Н	-0.87009	-2.35303	-1.35873	С	1.396549	7.884025	-1.71595
Н	-1.862	-3.78682	-1.16407	С	1.916567	9.244309	-1.23375
Н	-0.06967	-4.82392	0.282244	С	1.243401	10.43661	-1.92577
Н	0.927932	-3.3926	0.060398	С	1.765494	11.79127	-1.43674
Н	0.969457	-3.80976	-2.42305	Н	1.542247	7.804068	-2.8033
Н	-0.02071	-5.24365	-2.19729	Н	0.309932	7.831313	-1.55112
С	2.008076	-5.45405	-1.47615	Н	3.003314	9.296963	-1.39679
С	2.591653	-6.05713	-2.7602	Н	1.769095	9.325622	-0.14628

С	3.858379	-6.89003	-2.52521	Н	0.157214	10.38225	-1.76477
С	4.435286	-7.48773	-3.81232	Н	1.393724	10.35624	-3.01168
Н	2.770425	-4.8277	-0.98922	Н	1.26564	12.62045	-1.94946
Н	1.780848	-6.26272	-0.76572	Н	2.842948	11.88969	-1.61703
Н	2.816629	-5.24897	-3.47242	Н	1.597764	11.91606	-0.35987
Н	1.830174	-6.6851	-3.24593	С	5.556594	-0.37734	-0.30061
Н	3.633198	-7.6984	-1.81512	С	6.424607	-0.03884	-1.32597
Н	4.619053	-6.26231	-2.03902	С	7.744956	-0.563	-1.43534
Н	5.336457	-8.07712	-3.61005	С	8.249446	-1.46185	-0.5303
Н	4.704955	-6.70234	-4.5292	С	7.400692	-1.86337	0.538012
Н	3.709553	-8.1476	-4.30299	С	6.057257	-1.32662	0.65764
С	-1.87803	0.558653	4.702586	С	-6.99416	-3.02801	-0.85911
С	-0.60861	0.668391	5.261101	С	-8.33488	-3.36237	-1.20615
С	0.625835	0.810772	4.605117	С	-9.34709	-2.43671	-1.18324
С	0.904735	0.8295	3.243444	С	-9.01231	-1.10962	-0.79729
С	0.009145	0.700889	2.165879	С	-7.64884	-0.76628	-0.43782
С	-1.41231	0.61871	2.235347	Ν	-7.49576	0.518462	-0.10402
С	-2.23912	0.559141	3.345773	S	-8.97954	1.220529	-0.24273
С	-1.96199	0.640051	0.815323	Ν	-9.85924	-0.07499	-0.72527
С	-0.7095	0.6233	-0.00894	Ν	5.386139	-1.80577	1.709244
С	0.419456	0.686507	0.753796	S	6.399593	-2.85633	2.474081
Н	-2.70245	0.476177	5.406684	Ν	7.714568	-2.73569	1.503956
Н	-0.56482	0.658264	6.347313	Н	6.092079	0.647955	-2.09739
Н	1.489678	0.916531	5.257181	Н	8.356654	-0.23751	-2.2713
Н	1.949751	0.949857	2.971718	Н	9.250526	-1.87067	-0.60871
Н	-3.30413	0.486949	3.133014	Н	-6.24979	-3.81488	-0.92337
С	4.215992	0.203298	-0.20931	Н	-8.54596	-4.38536	-1.50278
С	3.721874	1.284189	-0.90908	Н	-10.3689	-2.68126	-1.4508
С	2.355498	1.596917	-0.66221	Н	-0.72972	0.570672	-1.09093
С	1.79895	0.731843	0.264838	Н	-2.42621	1.636924	0.693135
S	2.964198	-0.45908	0.823642				

Cartesian coordinates of the DFT optimized ground-state of protonated BTAz-3

Ν	1.468735	-1.55415	-0.43034	Н	9.207683	-1.14488	5.642174
С	0.890928	-0.36723	-0.23757	С	-2.80752	0.67414	0.233908
С	-0.55549	-0.45149	-0.10852	С	-3.66455	1.726336	0.503555
Ν	-1.02227	-1.69904	-0.20979	С	-5.04591	1.393117	0.552368
S	0.276907	-2.68132	-0.44755	С	-5.24665	0.049245	0.300199
С	-1.35869	0.71789	0.105289	S	-3.74212	-0.79837	0.030516
С	-0.64317	1.909832	0.180541	Н	-3.31541	2.739417	0.670952
С	0.757065	1.994745	0.062137	С	-6.11152	2.430203	0.819991
С	1.585921	0.894222	-0.15934	С	-6.3689	3.369292	-0.37709
Н	-1.17958	2.840198	0.336597	С	-7.43621	4.425729	-0.07927
Н	1.201063	2.979888	0.151161	Н	-7.05395	1.948421	1.103525
С	3.020814	1.024865	-0.30028	Н	-5.809	3.035765	1.685286
С	3.743239	2.208285	-0.36708	Н	-6.66953	2.768717	-1.24585
С	5.14246	2.060859	-0.50163	Н	-5.42795	3.858905	-0.65865

С	5.521181	0.718591	-0.5385	Н	-7.14799	5.054217	0.771991
S	4.125197	-0.33536	-0.40405	Н	-8.40113	3.961708	0.159749
Н	3.270379	3.184309	-0.34596	С	-7.07965	-1.50199	4.057729
С	6.06956	3.242144	-0.67699	С	-8.40346	-1.37655	4.491634
С	5.765527	4.074802	-1.93925	С	-9.53637	-1.03729	3.74487
С	6.716912	5.263946	-2.0997	С	-9.63926	-0.70158	2.392864
Н	6.004847	3.895992	0.205	С	-8.61363	-0.60375	1.441453
Н	7.105935	2.896163	-0.72847	С	-7.23175	-0.90771	1.621881
Н	4.728621	4.435057	-1.90353	С	-6.56183	-1.30479	2.773157
Н	5.831828	3.421811	-2.81904	С	-6.52617	-0.75801	0.281776
Н	7.758761	4.930867	-2.17693	С	-7.63111	-0.26527	-0.60588
Н	6.65008	5.946557	-1.24356	С	-8.82646	-0.20128	0.040295
С	6.990171	-2.61657	-3.25817	Н	-6.35906	-1.8031	4.813985
С	8.215668	-3.2841	-3.31865	Н	-8.57789	-1.58578	5.544063
С	9.379012	-3.06345	-2.57794	Н	-10.4745	-1.03416	4.294898
С	9.619838	-2.09149	-1.60213	Н	-10.6402	-0.48506	2.030294
С	8.763695	-1.11899	-1.09206	Н	-5.49228	-1.47046	2.65704
С	7.330555	-0.91285	-1.42745	С	-12.2164	1.421495	-1.10329
С	6.600475	-1.57285	-2.41244	С	-11.9549	0.391843	-1.9585
С	6.860972	0.153861	-0.60288	С	-10.7477	-0.32182	-1.65882
С	7.954003	0.590291	0.178818	С	-10.1098	0.198112	-0.54805
С	9.107868	-0.15876	-0.09621	S	-10.9965	1.568016	0.11493
Н	6.229676	-2.96036	-3.95521	Η	-12.6004	0.139248	-2.79303
Н	8.272848	-4.08905	-4.04921	С	-10.3009	-1.52225	-2.4579
Н	10.21438	-3.72352	-2.79846	С	-11.2619	-2.72416	-2.34404
Н	10.62129	-2.09246	-1.17742	С	-10.8062	-3.91965	-3.18538
Н	5.577856	-1.22845	-2.54718	Н	-10.2146	-1.23592	-3.51542
С	12.82933	0.558055	0.966881	Η	-9.29939	-1.83618	-2.1431
С	12.1173	0.344071	2.111287	Η	-12.2688	-2.41692	-2.65408
С	10.73281	0.045633	1.887307	Н	-11.3441	-3.01695	-1.28892
С	10.4124	0.03645	0.542844	Н	-9.81512	-4.27259	-2.87484
S	11.8285	0.407886	-0.43771	Η	-10.7472	-3.65811	-4.24853
Н	12.55905	0.392374	3.101723	Η	7.906556	1.388292	0.91037
С	9.782849	-0.28299	3.014634	Η	13.87985	0.796095	0.865294
С	10.10616	-1.62084	3.710636	Н	-7.46684	-0.00065	-1.6438
С	9.155897	-1.92493	4.872589	Н	-13.0487	2.112632	-1.11887
Н	9.81358	0.521938	3.763381	Н	-6.26274	-1.78011	-0.04752
Н	8.754374	-0.31846	2.639732	Н	9.404362	-2.87979	5.34904
Н	11.14144	-1.60205	4.075689	Н	6.483473	5.838372	-3.00286
Н	10.05916	-2.42745	2.967578	Н	-7.58934	5.083561	-0.94121
Н	8.115334	-1.98384	4.530201	Η	-11.5036	-4.75812	-3.08718

Cartesian coordinates of the DFT optimized ground-state of protonated BTAz-4

С	1.421424	0.250647	-0.17928	Н	-14.2881	-1.21674	-3.19177
С	1.193323	1.598419	0.230394	С	-11.9882	-2.63039	-2.25946
С	-0.07948	2.114362	0.439459	С	-12.912	-3.81646	-1.91139
С	-1.1776	1.250479	0.24839	С	-12.3484	-5.15748	-2.38961

С	-0.94912	-0.09825	-0.15	Н	-11.827	-2.61317	-3.34636
С	0.323187	-0.61468	-0.36344	Н	-11.0049	-2.80013	-1.80677
С	2.810926	-0.02364	-0.36515	Н	-13.9011	-3.65126	-2.35715
С	3.630503	1.045489	-0.09517	Н	-13.0678	-3.84064	-0.82468
S	2.705643	2.47099	0.423948	Н	-11.3729	-5.36641	-1.93357
S	-2.46115	-0.97214	-0.3463	Н	-12.2147	-5.16707	-3.47784
С	-3.38247	0.459467	0.152989	С	5.067364	1.119314	-0.18229
С	-2.56727	1.529125	0.424921	С	5.88007	2.230069	-0.08157
0	-0.27043	3.409263	0.853943	С	7.270197	1.973108	-0.23046
0	0.488156	-1.91091	-0.78321	С	7.535753	0.62664	-0.44976
Н	3.181431	-0.97895	-0.7185	S	6.043934	-0.31046	-0.45049
Н	-2.93362	2.485295	0.779655	Н	5.483768	3.228579	0.075856
С	0.818034	-2.85933	0.256687	С	8.299079	3.079753	-0.23067
С	0.9699	-4.22787	-0.38851	С	8.120402	4.076735	-1.39422
С	1.322831	-5.31308	0.633937	С	9.160503	5.200552	-1.36637
Н	1.748405	-2.5507	0.752366	Н	8.244287	3.629463	0.720192
Н	0.018389	-2.86268	1.010394	Н	9.305234	2.653743	-0.28444
Н	1.746227	-4.16606	-1.16109	Н	7.111057	4.507818	-1.35884
Н	0.545986	-5.40948	1.402041	Н	8.186415	3.529597	-2.34346
Н	2.268905	-5.09327	1.142934	Н	10.17922	4.800667	-1.43593
С	-0.37555	4.383009	-0.20946	Н	9.094797	5.780533	-0.43764
С	-0.53253	5.756756	0.423313	С	8.775931	-2.34456	-3.65526
С	-0.66822	6.863382	-0.62804	С	9.93728	-3.10594	-3.80729
Н	0.524912	4.3389	-0.8364	С	11.09316	-3.12071	-3.02356
Н	-1.24026	4.136073	-0.84199	С	11.39341	-2.34884	-1.89654
Н	-1.41223	5.743684	1.079079	С	10.61576	-1.395	-1.24597
Н	0.21277	6.907446	-1.27916	С	9.218379	-1.00083	-1.56563
Н	-0.77603	7.842258	-0.15006	С	8.458845	-1.42007	-2.65454
С	-4.82774	0.43105	0.229331	С	8.82149	-0.04627	-0.58201
С	-5.70447	1.495548	0.211904	С	9.921451	0.149161	0.280372
С	-7.08128	1.142305	0.323688	С	11.01331	-0.64853	-0.09817
С	-7.25281	-0.22449	0.417983	Н	8.008247	-2.49711	-4.41014
S	-5.71962	-1.06741	0.387997	Н	9.94272	-3.78266	-4.65992
Н	-5.36858	2.52104	0.099858	Н	11.8707	-3.81256	-3.33816
С	-8.18021	2.178687	0.295898	Н	12.37705	-2.51642	-1.46342
С	-8.39342	2.808179	-1.09641	Н	7.476182	-0.96227	-2.74257
С	-9.49642	3.869918	-1.10147	Н	9.921658	0.819459	1.131792
Н	-9.12564	1.74405	0.640101	С	14.74895	-0.4818	1.12991
Н	-7.93466	2.975615	1.011306	С	13.97995	-0.78489	2.216075
Н	-8.63565	2.013955	-1.81477	С	12.58147	-0.90285	1.923852
Н	-7.44941	3.250092	-1.43959	С	12.30785	-0.68373	0.586298
Н	-9.26754	4.686089	-0.40558	S	13.78718	-0.32215	-0.30053
Н	-10.4632	3.442182	-0.8084	Н	14.38971	-0.92662	3.211293
С	-9.43195	-0.7759	4.313024	С	11.5678	-1.2958	2.972299
С	-10.7872	-0.65115	4.578819	С	11.72298	-2.75459	3.448967
С	-11.8615	-0.61683	3.661703	С	10.71093	-3.13063	4.535068
С	-11.8351	-0.64261	2.277598	Н	11.66428	-0.62734	3.840126
С	-10.7131	-0.70399	1.421269	Н	10.55295	-1.15677	2.585109

С	-9.34978	-0.86129	1.802346	Н	12.74303	-2.90975	3.824301
С	-8.78556	-0.89665	3.067332	Н	11.61054	-3.42284	2.585349
С	-8.52078	-1.03899	0.532617	Н	9.680934	-3.01576	4.175494
С	-9.54252	-0.83947	-0.54838	Н	10.82474	-2.49502	5.421911
С	-10.7972	-0.67	-0.04355	Н	-14.9498	1.078625	-2.0993
Н	-8.77713	-0.79773	5.180986	Н	15.82066	-0.34032	1.085372
Н	-11.0643	-0.58632	5.627867	Н	-8.22775	-2.10468	0.520106
Н	-12.8509	-0.55542	4.108649	Н	10.83871	-4.17137	4.853004
Н	-12.7998	-0.60388	1.779128	Н	9.016963	5.893292	-2.20285
Н	-7.70417	-1.01252	3.098671	Н	1.428284	-6.28701	0.145375
Н	-9.28285	-0.83734	-1.6001	Н	0.034118	-4.4783	-0.90309
С	-14.1043	0.454505	-1.84222	Н	0.335265	5.94693	1.066217
С	-13.7332	-0.73703	-2.39241	Н	-1.54631	6.70643	-1.26616
С	-12.5409	-1.29496	-1.82347	Н	-9.6161	4.306912	-2.09838
С	-12.0269	-0.49026	-0.82396	Н	-13.0205	-5.9819	-2.12965
S	-13.011	0.952539	-0.59696				

Excitation energies and oscillator strengths from the ground-state structures (S_0) of BTAzs and protonated BTAzs

BTAz-2						
Excited State	1:	Singlet-A	2.1814 eV	568.37 nm	f=0.0105	<s**2>=0.000</s**2>
208 ->210		0.70433				
Excited State	2:	Singlet-A	2.6981 eV	459.52 nm	f=0.2358	<s**2>=0.000</s**2>
207 ->210		0.69687				
Excited State	3:	Singlet-A	2.7185 eV	456.08 nm	f=0.0013	<s**2>=0.000</s**2>
207 ->209		0.69568				
Excited State	4:	Singlet-A	2.8607 eV	433.41 nm	f=0.0002	<s**2>=0.000</s**2>
207 ->211		0.67675				
208 ->212		-0.18565				
Excited State	5:	Singlet-A	3.2041 eV	386.96 nm	f=0.0982	<s**2>=0.000</s**2>
203 ->211		0.13771				
205 ->211		-0.12593				
206 ->210		-0.24082				
207 ->211		0.16765				
208 ->212		0.60917				
			2	**		
BTAz-3						
Excited State	1:	Singlet-A	2.0654 eV	600.29 nm	f=0.0085	<s**2>=0.000</s**2>
231 -> 236		0.12427				
232 -> 235		-0.37847				
233 -> 236		0.57790				
Excited State	2:	Singlet-A	2.0656 eV	600.24 nm	f=0.0001	<s**2>=0.000</s**2>
231 -> 235		0.12419				
232 -> 236		-0.37814				
233 -> 235		0.57794				
Excited State	3:	Singlet-A	2.2138 eV	560.05 nm	f=0.0052	<s**2>=0.000</s**2>
232 -> 234		0.70418				
Excited State	4:	Singlet-A	2.5654 eV	483.29 nm	f=0.0844	<s**2>=0.000</s**2>
231 -> 234		0.69451				
Excited State	5:	Singlet-A	2.6008 eV	476.71 nm	f=0.0004	<s**2>=0.000</s**2>
231 -> 235		-0.26201				
232 -> 236		0.51312				
233 -> 235		0.39745				
Excited State	6:	Singlet-A	2.6013 eV	476.63 nm	f=0.0001	<s**2>=0.000</s**2>
231 -> 236		-0.25881				

232 -> 235	0.50907	
233 -> 236	0.39381	
Excited State	7: Singlet-A	2.9779 eV 416.35 nm f=0.1228 <s**2>=0.000</s**2>
230 -> 235	-0.16209	
231 -> 236	0.44615	
232 -> 235	0.23556	
233 -> 237	0.44476	
Excited State 8	8: Singlet-A	3.0539 eV 405.98 nm f=0.2957 <s**2>=0.000</s**2>
231 -> 236	-0.42131	
232 -> 235	-0.17123	
233 -> 237	0.51224	
233 -> 239	-0.10091	
Excited State	0: Singlet A	3.4744 eV 356.85 nm f=0.4237 < S**2>=0.000
225 > 234	9. Singlet-A	5.4744 eV 550.85 mm 1-0.4257 <5*2>=0.000
223 -> 234 229 -> 234	-0.21152	
$220 \Rightarrow 234$ 230 -> 235	-0.13796	
230 - 233	0.23611	
$233 \rightarrow 239$	0.56513	

BTAz-4		
Excited State	1: Singlet-A	2.0915 eV 592.81 nm f=0.0063 <s**2>=0.000</s**2>
277 -> 281	0.20896	
278 -> 281	-0.44702	
279 -> 281	0.49822	
Excited State	2: Singlet-A	2.5097 eV 494.03 nm f=0.0019 <s**2>=0.000</s**2>
277 -> 280	-0.35979	
278 -> 280	-0.36854	
279 -> 280	0.46138	
Excited State	3: Singlet-A	2.5338 eV 489.31 nm f=0.0016 <s**2>=0.000</s**2>
277 -> 281	-0.29462	
278 -> 281	0.39453	
2/9 -> 281	0.49080	2 (771 - M A(2.12
Excited State	4: Singlet-A	$2.6//1 \text{ ev } 463.13 \text{ nm } 1=1.5955 < 8**2 \ge 0.000$
2/9 -> 282	0.69602	2.8476 eV 425.40 mm f=0.0080 < 8**2>=0.000
Exclued State $275 > 280$	J. Singlet-A	2.84/0 eV 433.40 mm 1=0.0080 <52>=0.000
2/3 - 280	-0.118/0	
277 -> 280 278 -> 280	-0.44671	
278 -> 280	-0.44071	***
Protonated B	ГАz-2	
Excited State	1: Singlet-A	1.2022 eV 1031.29 nm f=0.0015 <s**2>=0.000</s**2>
207 ->209	0.66903	
208 ->210	-0.21835	
Excited State	2: Singlet-A	1.2650 eV 980.11 nm f=0.0325 <s**2>=0.000</s**2>
207 ->209	0.21872	
208 ->210	0.66754	
Excited State	3: Singlet-A	1.3337 eV 929.65 nm f=0.0063 <s**2>=0.000</s**2>
207 ->210	0.70312	
Excited State	4: Singlet-A	2.1079 eV 588.18 nm f=0.0004 <s**2>=0.000</s**2>
206 ->209	0.69652	
Excited State	5: Singlet-A	2.1955 eV 564.72 nm f=0.0003 <s**2>=0.000</s**2>
205 ->209	0.69946	
Excited State	6: Singlet-A	2.2638 eV 547.69 nm f= $0.0018 < S^{**2} = 0.000$
206 ->210	0.69732	
Excited State	/: Singlet-A	2.3000 eV 525.22 nm t=0.0028 <s**2>=0.000</s**2>
205 ->210	0.09961	2 4567 N 504 69 mm f-0 0002 -9**2 -0 000
	o. Singlet-A	2.430/ eV 504.08 nm f=0.0003 <5**2>=0.000
204 ->209	0.09342	***
D () D	.	

Protonated BTAz-3 Excited State 1: Singlet-A 0.3824 eV 3241.90 nm f=0.1591 <S**2>=0.000

233 -> 234		0.44119		
233 -> 235		0.64904		
233 <- 234		-0.24373		
233 <- 235	р.	-0.23516	0.7290 eV 1(90.00 cm - 6-0.0000 cS**2 - 0.000	
Exciled State $232 \rightarrow 234$	2:	0 67561	0.7380 eV 1680.00 nm 1=0.0009 <s**2>=0.000</s**2>	
$232 \Rightarrow 234$ $232 \Rightarrow 235$		-0 14458		
Excited State	3:	Singlet-A	0.8485 eV 1461.15 nm f=0.0133 <s**2>=0.000</s**2>	
232 -> 234		0.15520		
232 -> 235		0.68514		
Excited State	4:	Singlet-A	1.3146 eV 943.16 nm f=0.0020 <s**2>=0.000</s**2>	
230 -> 234		-0.25370		
$231 \rightarrow 234$		0.63065		
Excited State	5.	-0.11955 Singlet-A	1 4010 eV 884 99 nm f=0 0174 <s**2>=0 000</s**2>	
230 -> 235	5.	-0.23814		
231 -> 235		0.63479		
233 -> 236		0.13737		
Excited State	6:	Singlet-A	1.4786 eV 838.51 nm f=0.0008 <s**2>=0.000</s**2>	
$230 \rightarrow 234$		0.64175		
$231 \rightarrow 234$ Evolted State	7.	0.2/36/	1.5526 aV 708 04 nm f=0.0052 $< 8**2 > -0.000$	
230 -> 235	1.	0.63871	1.5550 eV 798.04 IIII 1-0.0055 <5. 2>-0.000	
231 -> 235		0.27056		
Excited State	8:	Singlet-A	1.6216 eV 764.60 nm f=0.3237 <s**2>=0.000</s**2>	
230 -> 235		0.13293		
233 -> 236		0.68088		
Excited State	9:	Singlet-A	1.8098 eV 685.07 nm f=0.0011 < S**2=0.000	
229 -> 234		0.68109		
229 255		0.10011		
Excited State	10	Singlet-A	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000</s**2>	
Excited State 228 -> 234	10:	Singlet-A 0.65273	1.8761 eV 660.87 nm f= $0.0002 < S^{**}2 > = 0.000$	
Excited State 228 -> 234 229 -> 235	10:	Singlet-A 0.65273 0.22223	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000</s**2>	
Excited State 228 -> 234 229 -> 235	10:	Singlet-A 0.65273 0.22223	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 ***</s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B'	10: TA2	Singlet-A 0.65273 0.22223 z-4	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 ***</s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280	10: FA 2 1:	Singlet-A 0.65273 0.22223 z-4 Singlet-A 0.61049	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000</s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 281	10: TA 1:	Singlet-A 0.65273 0.22223 z-4 Singlet-A 0.61049 0.60261	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000</s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 281 279 <- 280	10: TA2 1:	Singlet-A 0.65273 0.22223 z-4 Singlet-A 0.61049 0.60261 -0.48473	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000</s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 281 279 <- 280 Excited State	10: TA2 1: 2:	Singlet-A 0.65273 0.22223 z-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000</s**2></s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 281 279 <- 280 Excited State 278 -> 280	10: TA2 1: 2:	Singlet-A 0.65273 0.22223 z-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A 0.68869	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000</s**2></s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 280 Excited State 278 -> 280 279 -> 280	10: TA 1: 2:	Singlet-A 0.65273 0.22223 z-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A 0.68869 0.13393	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000</s**2></s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 281 279 <- 280 Excited State 278 -> 280 279 -> 280 Excited State 279 -> 280 Excited State	10: TA2 1: 2: 3:	Singlet-A 0.65273 0.22223 z-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A 0.68869 0.13393 Singlet-A 0.6005	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000 0.7447 eV 1664.80 nm f=0.0101 <s**2>=0.000</s**2></s**2></s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 280 Excited State 278 -> 280 279 -> 280 Excited State 278 -> 280 Excited State 278 -> 280	10: TA 1: 2: 3: 4:	Singlet-A 0.65273 0.22223 z-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A 0.68869 0.13393 Singlet-A 0.69605 Singlet-A	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000 0.7447 eV 1664.80 nm f=0.0101 <s**2>=0.000 0.9308 eV 1331 98 nm f=0.0010 <s**2>=0.000</s**2></s**2></s**2></s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 280 Excited State 278 -> 280 279 -> 280 Excited State 278 -> 281 Excited State 278 -> 281 Excited State 277 -> 280	10: TA ₂ 1: 2: 3: 4:	Singlet-A 0.65273 0.22223 z-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A 0.68869 0.13393 Singlet-A 0.69605 Singlet-A 0.69668	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000 0.7447 eV 1664.80 nm f=0.0101 <s**2>=0.000 0.9308 eV 1331.98 nm f=0.0010 <s**2>=0.000</s**2></s**2></s**2></s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 281 279 <- 280 Excited State 278 -> 280 Excited State 278 -> 280 Excited State 278 -> 281 Excited State 277 -> 280 Excited State	10: TA 1: 2: 3: 4: 5:	Singlet-A 0.65273 0.22223 z-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A 0.68869 0.13393 Singlet-A 0.69605 Singlet-A 0.69668 Singlet-A	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000 0.7447 eV 1664.80 nm f=0.0101 <s**2>=0.000 0.9308 eV 1331.98 nm f=0.0010 <s**2>=0.000 1.1913 eV 1040.76 nm f=0.0001 <s**2>=0.000</s**2></s**2></s**2></s**2></s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 280 Excited State 278 -> 280 Excited State 279 -> 280 Excited State 278 -> 281 Excited State 277 -> 280 Excited State 277 -> 281	10: TA ₂ 1: 2: 3: 4: 5:	Singlet-A 0.65273 0.22223 z-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A 0.68869 0.13393 Singlet-A 0.69605 Singlet-A 0.69668 Singlet-A 0.69668 Singlet-A	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000 0.7447 eV 1664.80 nm f=0.0101 <s**2>=0.000 0.9308 eV 1331.98 nm f=0.0010 <s**2>=0.000 1.1913 eV 1040.76 nm f=0.0001 <s**2>=0.000</s**2></s**2></s**2></s**2></s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 280 Excited State 278 -> 280 Excited State 278 -> 280 Excited State 278 -> 281 Excited State 277 -> 280 Excited State 277 -> 281 Excited State 277 -> 281 Excited State	10: TA2 1: 2: 3: 4: 5: 6:	Singlet-A 0.65273 0.22223 z-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A 0.68869 0.13393 Singlet-A 0.69605 Singlet-A 0.69668 Singlet-A 0.69775 Singlet-A	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000 0.7447 eV 1664.80 nm f=0.0101 <s**2>=0.000 0.9308 eV 1331.98 nm f=0.0010 <s**2>=0.000 1.1913 eV 1040.76 nm f=0.0001 <s**2>=0.000 1.2536 eV 989.00 nm f=0.0068 <s**2>=0.000</s**2></s**2></s**2></s**2></s**2></s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 280 279 -> 280 Excited State 278 -> 280 Excited State 278 -> 281 Excited State 277 -> 280 Excited State 277 -> 281 Excited State 277 -> 281	10: TA ₂ 1: 2: 3: 4: 5: 6:	Singlet-A 0.65273 0.22223 z-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A 0.68869 0.13393 Singlet-A 0.69605 Singlet-A 0.69668 Singlet-A 0.69775 Singlet-A -0.19375	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000 0.7447 eV 1664.80 nm f=0.0101 <s**2>=0.000 0.9308 eV 1331.98 nm f=0.0010 <s**2>=0.000 1.1913 eV 1040.76 nm f=0.0001 <s**2>=0.000 1.2536 eV 989.00 nm f=0.0068 <s**2>=0.000</s**2></s**2></s**2></s**2></s**2></s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 280 Excited State 279 -> 280 Excited State 277 -> 280 Excited State 277 -> 280 Excited State 277 -> 281 Excited State 277 -> 281	10: TA 1: 2: 3: 4: 5: 6:	Singlet-A 0.65273 0.22223 2-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A 0.68869 0.13393 Singlet-A 0.69605 Singlet-A 0.69668 Singlet-A 0.69775 Singlet-A 0.69775 Singlet-A 0.69775 Singlet-A 0.69775 Singlet-A 0.69775 Singlet-A 0.69775 Singlet-A 0.69761	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000 0.7447 eV 1664.80 nm f=0.0101 <s**2>=0.000 0.9308 eV 1331.98 nm f=0.0010 <s**2>=0.000 1.1913 eV 1040.76 nm f=0.0001 <s**2>=0.000 1.2536 eV 989.00 nm f=0.0068 <s**2>=0.000</s**2></s**2></s**2></s**2></s**2></s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 280 279 -> 280 Excited State 278 -> 280 Excited State 277 -> 280 Excited State 277 -> 280 Excited State 277 -> 281 Excited State 277 -> 281 Excited State 277 -> 280 Excited State 277 -> 280 Excited State 277 -> 280 Excited State 276 -> 280 276 -> 280 Excited State	10: TA ₂ 1: 2: 3: 4: 5: 6: 7.	Singlet-A 0.65273 0.22223 z-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A 0.68869 0.13393 Singlet-A 0.69605 Singlet-A 0.69668 Singlet-A 0.69668 Singlet-A 0.69775 Singlet-A 0.69775 -0.23448 0.62061 Singlet-A	 1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000</s**2> *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000</s**2> 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000</s**2> 0.7447 eV 1664.80 nm f=0.0101 <s**2>=0.000</s**2> 0.9308 eV 1331.98 nm f=0.0010 <s**2>=0.000</s**2> 1.1913 eV 1040.76 nm f=0.0001 <s**2>=0.000</s**2> 1.2536 eV 989.00 nm f=0.0068 <s**2>=0.000</s**2> 1.4445 eV 858 31 nm f=0.0005 <s**2>=0.000</s**2> 	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 281 279 -> 280 Excited State 278 -> 280 Excited State 277 -> 280 Excited State 277 -> 280 Excited State 277 -> 281 Excited State 277 -> 281 Excited State 277 -> 281 Excited State 277 -> 280 Excited State 275 -> 280 Excited State 275 -> 280 Excited State 275 -> 280	10: TA 1: 2: 3: 4: 5: 6: 7:	Singlet-A 0.65273 0.22223 z-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A 0.68869 0.13393 Singlet-A 0.69605 Singlet-A 0.69668 Singlet-A 0.69775 Singlet-A -0.19375 -0.23448 0.62061 Singlet-A 0.64671	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000 0.7447 eV 1664.80 nm f=0.0101 <s**2>=0.000 0.9308 eV 1331.98 nm f=0.0010 <s**2>=0.000 1.1913 eV 1040.76 nm f=0.0001 <s**2>=0.000 1.2536 eV 989.00 nm f=0.0068 <s**2>=0.000 1.4445 eV 858.31 nm f=0.0005 <s**2>=0.000</s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 280 Excited State 279 -> 280 Excited State 279 -> 280 Excited State 277 -> 280 Excited State 277 -> 280 Excited State 277 -> 281 Excited State 277 -> 281 Excited State 277 -> 280 Excited State 277 -> 280 Excited State 277 -> 280 Excited State 277 -> 280 Excited State 275 -> 280 276 -> 280 Excited State 275 -> 280 Excited State 276 -> 280 Excited State 276 -> 280 Excited State 276 -> 280	10: TA ₂ 1: 2: 3: 4: 5: 6: 7:	Singlet-A 0.65273 0.22223 2-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A 0.68869 0.13393 Singlet-A 0.69605 Singlet-A 0.69668 Singlet-A 0.69775 Singlet-A 0.69775 Singlet-A 0.69775 Singlet-A 0.69775 Singlet-A 0.69775 Singlet-A 0.69775 Singlet-A 0.6961 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.64671 0.27299	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000 0.7447 eV 1664.80 nm f=0.0101 <s**2>=0.000 0.9308 eV 1331.98 nm f=0.0010 <s**2>=0.000 1.1913 eV 1040.76 nm f=0.0001 <s**2>=0.000 1.2536 eV 989.00 nm f=0.0068 <s**2>=0.000 1.4445 eV 858.31 nm f=0.0005 <s**2>=0.000</s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 280 279 -> 280 Excited State 278 -> 280 Excited State 277 -> 280 Excited State 277 -> 281 Excited State 277 -> 281 Excited State 277 -> 281 Excited State 277 -> 280 275 -> 280 276 -> 280 Excited State 275 -> 280 276 -> 280 Excited State 275 -> 280 Excited State 275 -> 280 Excited State 276 -> 280 Excited State 276 -> 280 Excited State 276 -> 280 Excited State 276 -> 280 Excited State	10: TA ₂ 1: 2: 3: 4: 5: 6: 7: 8:	Singlet-A 0.65273 0.22223 z-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A 0.68869 0.13393 Singlet-A 0.69605 Singlet-A 0.69668 Singlet-A 0.69668 Singlet-A 0.69775 Singlet-A 0.69775 Singlet-A 0.69775 Singlet-A 0.69675 Singlet-A 0.69675 Singlet-A 0.69675 Singlet-A 0.69675 Singlet-A 0.69675 Singlet-A 0.69675 Singlet-A 0.69675 Singlet-A 0.69675 Singlet-A 0.69675 Singlet-A 0.69675 Singlet-A 0.69675 Singlet-A 0.69675 Singlet-A 0.69675 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000 0.7447 eV 1664.80 nm f=0.0101 <s**2>=0.000 0.9308 eV 1331.98 nm f=0.0010 <s**2>=0.000 1.1913 eV 1040.76 nm f=0.0001 <s**2>=0.000 1.2536 eV 989.00 nm f=0.0068 <s**2>=0.000 1.4445 eV 858.31 nm f=0.0005 <s**2>=0.000 1.5170 eV 817.32 nm f=0.0080 <s**2>=0.000</s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 280 279 -> 280 Excited State 278 -> 280 Excited State 277 -> 280 Excited State 277 -> 281 Excited State 277 -> 281 Excited State 274 -> 280 275 -> 280 276 -> 280 Excited State 275 -> 280 Excited State 276 -> 280 Excited State 276 -> 280 Excited State 277 -> 281 Excited State 275 -> 280 Excited State 276 -> 280 Excited State 276 -> 280 Excited State 277 -> 281 Excited State 276 -> 280 Excited State 277 -> 281	10: TA 2 1: 2: 3: 4: 5: 6: 7: 8:	Singlet-A 0.65273 0.22223 2-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A 0.68869 0.13393 Singlet-A 0.69605 Singlet-A 0.69668 Singlet-A 0.696775 Singlet-A 0.69775 Singlet-A 0.69775 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.6905 Singlet-A 0.6905 Singlet-A 0.6905 Singlet-A 0.6905 Singlet-A 0.6905 Singlet-A 0.6905 Singlet-A 0.6905 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.6205 S	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000 0.7447 eV 1664.80 nm f=0.0101 <s**2>=0.000 0.9308 eV 1331.98 nm f=0.0010 <s**2>=0.000 1.1913 eV 1040.76 nm f=0.0001 <s**2>=0.000 1.2536 eV 989.00 nm f=0.0068 <s**2>=0.000 1.4445 eV 858.31 nm f=0.0005 <s**2>=0.000 1.5170 eV 817.32 nm f=0.0080 <s**2>=0.000</s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 280 279 -> 280 Excited State 278 -> 280 Excited State 277 -> 280 Excited State 277 -> 280 Excited State 277 -> 281 Excited State 274 -> 280 275 -> 280 276 -> 280 Excited State 275 -> 280 Excited State 276 -> 280 Excited State 276 -> 281 Excited State 276 -> 281 Excited State 276 -> 280 Excited State 276 -> 281 Excited State 276 -> 280 Excited State 276 -> 281 Excited State 276 -> 280 Excited State 276 -> 281 Excited State 276 -> 281 276 -> 281 2	10: TA 2 1: 2: 3: 4: 5: 6: 7: 8:	Singlet-A 0.65273 0.22223 2-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A 0.68669 0.13393 Singlet-A 0.69605 Singlet-A 0.69668 Singlet-A 0.69775 Singlet-A 0.69668 Singlet-A 0.69775 Singlet-A 0.69668 Singlet-A 0.69668 Singlet-A 0.69668 Singlet-A 0.69668 Singlet-A 0.69661 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.6975 Singlet-A 0.69605 Singlet-A 0.69605 Singlet-A 0.69605 Singlet-A 0.69605 Singlet-A 0.69605 Singlet-A 0.69605 Singlet-A 0.69605 Singlet-A 0.69605 Singlet-A 0.69605 Singlet-A 0.69605 Singlet-A 0.69605 Singlet-A 0.69605 Singlet-A 0.69605 Singlet-A 0.69605 Singlet-A 0.69605 Singlet-A 0.69605 Singlet-A 0.69605 Singlet-A 0.69605 Singlet-A 0.62061 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62662 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A 0.62661 Singlet-A	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000 0.7447 eV 1664.80 nm f=0.0101 <s**2>=0.000 0.9308 eV 1331.98 nm f=0.0010 <s**2>=0.000 1.1913 eV 1040.76 nm f=0.0001 <s**2>=0.000 1.2536 eV 989.00 nm f=0.0068 <s**2>=0.000 1.4445 eV 858.31 nm f=0.0005 <s**2>=0.000 1.5170 eV 817.32 nm f=0.0080 <s**2>=0.000</s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 281 279 -> 280 Excited State 278 -> 280 Excited State 278 -> 281 Excited State 277 -> 280 Excited State 277 -> 281 Excited State 277 -> 280 Excited State 277 -> 280 Excited State 277 -> 280 Excited State 275 -> 280 Excited State 274 -> 281 275 -> 281 276 -> 281 Excited State	10: TA 2 1: 2: 3: 4: 5: 6: 7: 8: 0.	Singlet-A 0.65273 0.22223 z-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A 0.68869 0.13393 Singlet-A 0.69605 Singlet-A 0.69668 Singlet-A 0.69668 Singlet-A 0.69775 Singlet-A 0.69775 Singlet-A 0.69675 Singlet-A 0.69668 Singlet-A 0.69675 0.23448 0.62061 Singlet-A 0.64671 0.27299 Singlet-A -0.19059 -0.23612 0.62008 Singlet A	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000 0.7447 eV 1664.80 nm f=0.0101 <s**2>=0.000 0.9308 eV 1331.98 nm f=0.0010 <s**2>=0.000 1.1913 eV 1040.76 nm f=0.0001 <s**2>=0.000 1.2536 eV 989.00 nm f=0.0068 <s**2>=0.000 1.4445 eV 858.31 nm f=0.0005 <s**2>=0.000 1.5170 eV 817.32 nm f=0.0080 <s**2>=0.000 1.6251 eV 762.95 nm f=0.0027 <s**2>=0.000</s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2>	
Excited State 228 -> 234 229 -> 235 Protonated B' Excited State 279 -> 280 279 -> 281 279 -> 280 Excited State 278 -> 280 Excited State 278 -> 280 Excited State 277 -> 280 Excited State 275 -> 280 276 -> 280 Excited State 275 -> 280 Excited State 275 -> 280 Excited State 275 -> 280 Excited State 275 -> 280 Excited State 276 -> 281 Excited State 274 -> 281 Excited State 276 -> 281 Excited State	10: TA 2 1: 2: 3: 4: 5: 6: 7: 8: 9:	Singlet-A 0.65273 0.22223 z-4 Singlet-A 0.61049 0.60261 -0.48473 Singlet-A 0.68869 0.13393 Singlet-A 0.69605 Singlet-A 0.69668 Singlet-A 0.69668 Singlet-A 0.69775 Singlet-A 0.62061 Singlet-A 0.62061 Singlet-A 0.64671 0.27299 Singlet-A -0.19059 -0.23612 0.62008 Singlet-A -0.10934	1.8761 eV 660.87 nm f=0.0002 <s**2>=0.000 *** 0.2960 eV 4187.95 nm f=0.0929 <s**2>=0.000 0.5211 eV 2379.24 nm f=0.0436 <s**2>=0.000 0.7447 eV 1664.80 nm f=0.0101 <s**2>=0.000 0.9308 eV 1331.98 nm f=0.0010 <s**2>=0.000 1.1913 eV 1040.76 nm f=0.0001 <s**2>=0.000 1.2536 eV 989.00 nm f=0.0068 <s**2>=0.000 1.4445 eV 858.31 nm f=0.0068 <s**2>=0.000 1.5170 eV 817.32 nm f=0.0080 <s**2>=0.000 1.6251 eV 762.95 nm f=0.0027 <s**2>=0.000</s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2></s**2>	

274 -> 280 275 -> 280	0.63506 -0.14786				
276 -> 280 Excited State	0.16736 10: Singlet-A	1.7250 eV 718	.74 nm	f=0.0003	<s**2>=0.000</s**2>
275 -> 281	0.64275				
276 -> 281	0.27670				
