Supplementary information for:

Identification of Synergistic Cu/V Red-ox Pair in

VCu:AlPO-5; a Comparison with VCu:ZSM-5

Katrine Lie Bøyesen, Tina Kristiansen and *Karina Mathisen

Department of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim Norway

*To whom the correspondence should be addressed: karina.mathisen@ntnu.no

XANES

Vanadium references

Table S1 shows the different XANES features and energy positions for the vanadium reference compounds used in this study.

Table S1 Energy positions and different spectral features of the different vanadium reference compounds.

Defense	Pre-edge peak	Pre-edge	Pre-edge	Pre-edge	D fo store	E /aV	AE/aV
Reference	position/ eV	height/a.u	area/a.u	width/eV	K-lactor"	E ₀ /ev	AE/ev
Na ₃ VO ₄	5470.17	0.48	3.5(2)	4.8(1)	0.59	5480.76	10.6
$\mathrm{NH}_4\mathrm{VO}_3$	5469.51	0.47	3.7(1)	5.1(2)	0.79	5480.283	10.8
V_2O_5	5470.3	0.38	3.5(1)	5.6(2)	0.42	5480.103	9.8
V_2O_4	5471	0.45	3.7(2)	5.2(1)	0.43	5479.12	8.12
V_2O_3	5469.72	0.38	2.4(1)	6.3(1)	0.11	5474.45	4.73
VO	-	-	-	-	-	5471.42	-

Pre-edge area and width are obtained from peak-fitting in Athena along with corresponding aR-factors

Temperature Programmed Reduction (C₃H₆-TPR)

Vanadium edge

Table S2 and S3 shows the spectral features and energy positions for VCu:AlPO-5 and VCu:ZSM-5 respectively during C_3H_6 -TPR.

Table S2 Energy positions and different spectral features for VCu:AlPO-5 at the V K-edge during C₃H₆-TPR

Reaction	Pre-edge	Pre-edge	Pre-edge	Pre-edge	R-		
temp/°C	position/eV	height/a.u	area/a.u	width/eV	factor ^a	E₀/ev	AE/ev
RT	5470.3	0.38	2.57(8)	4.3(1)	0.59	5482.74	12.44
215	5470.2	0.39	2.6(1)	4.3(1)	0.43	5482.54	12.34
225	5470.2	0.39	2.56(8)	4.2(1)	0.52	5482.64	12.44
255	5470.2	0.39	2.6(1)	4.2(1)	0.5	5482.54	12.34
290	5470.1	0.39	2.4(2)	4.1(1)	1.12	5482.36	12.26
310	5470.2	0.37	2.45(8)	4.2(1)	0.51	5482.55	12.35
390	5470.3	0.31	2.4(1)	4.8(2)	0.77	5480.89	10.59
450	5470.2	0.25	1.7(2)	4.9(3)	0.47	5478.56	8.36
^a R-factor obta	ined from peak-fit	in Athena* 1000)				

Table \$3 Fnorgy positions and different spectral features for VCu.78M-5 at the VK-adge during C.H. TPR
Table 55 Energy positions and uniferent spectral reatures for v Cu.25M-5 at the v R-cuge during C316-11 R

Reaction	Pre-edge	Pre-edge	Pre-edge	Pre-edge			
temp/°C	position/eV	height/a.u	area/a.u	width/eV	K-factor ^a	E₀/ev	AL/ev
RT	5470.4	0.39	2.41(9)	3.9(1)	0.85	5483.24	12.84
215	5470.3	0.38	2.37(9)	3.9(2)	0.86	5483.09	12.79
225	5470.3	0.37	2.2(2)	3.8(2)	1.93	5482.95	12.65
255	5470.4	0.37	2.4(1)	4.1(2)	0.93	5482.41	12.01
290	5470.5	0.3	2.3(1)	4.9(3)	1.1	5481.39	10.89
315	5470.5	0.29	2.2(1)	4.8(2)	0.79	5481.06	10.56
390	5470.4	0.25	1.9(1)	4.8(2)	0.43	5480.07	9.67
450	5469.9	0.18	1.2(1)	4.6(3)	0.35	5477.77	7.87
^a R-factor ob	tained from pea	k-fit in Athena	* 1000				

Copper edge

XANES of Cu:AlPO-5 and Cu:ZSM-5

Figure S1 XANES during C₃H₆-TPR for Cu:AlPO-5 and Cu:ZSM-5, b) Comparison of reduced Cu:AlPO-5 at 450°C with Cu₂(I)O data collected at SNBL, d) Comparison of reduced Cu:ZSM-5 at 450°C with Cu₂(I)O data collected at MaxLab.

EXAFS

Vanadium and Copper edge

Table S4 EXAFS least squares refinements of VCu:AlPO-5 and VCu:ZSM-5 at the Cu K-edge from in situ C_3H_6 -TPR^a.

Sample	Reaction stage	Shell	Ν	R/Å	$2\sigma^2/\text{\AA}^2$	E _F /eV	R/%
	RT ^b	Cu-O	3.5(3)	1.950(7)	0.009(2)	-1.3(3)	36.20
VCu:AIPO-5	Prop ^c	Cu-O	0.9(1)	1.849(7)	0.005(1)	-5.4(4)	30.46
	300 °C	Cu-O	2.4(1)	1.965(3)	0.015(1)		
	Prop ^c	Cu-O	0.6(1)	1.804(6)	0.007(2)	-3.1(3)	35.67
	400 °C	Cu-O	0.7(1)	1.957(7)	0.013(1)		
		CuCu	1.4(1)	2.511(3)	0.021(1)		
	Prop ^d	Cu-O	-	1.85(1)	-	-5.0(5)	37.87
	450°C	CuCu	4.9(6)	2.517(4)	0.031(3)		
	RT ^b	Cu-O	4.4(2)	1.930(4)	0.013(1)	-7.9(3)	27.49
	Prop ^c	Cu-O	0.4(1)	1.86(2)	0.004(1)	-5.1(5)	33.03
	300 °C	Cu-O	3.3(2)	1.953(6)	0.012(1)		
VC7SM 5	Prop ^c	Cu-O	0.7(1)	1.832(5)	0.004(1)	-6.7(4)	35.53
vCu:ZSM-5	400 °C	Cu-O	1.4(1)	2.006(7)	0.014(2)		
		CuCu	1.9(3)	2.51(1)	0.042(4)		
	Prop ^d	Cu-O	0.3(1)	1.85(4)	0.017(1)	-6.2	41.76
	450 °C	CuCu	6.6(1)	2.53(1)	0.038(1)		

^aThe least-squares refinements were carried out at wavenumber k=2-12 Å⁻¹ using a k³ weighting scheme. The goodness of fit, R, is given in %. The standard deviation in the last digit as calculated by EXCURV98 is given in parentheses. ^bAFAC=0.72 obtained from CuO₂^cAFAC=0.71 obtained from Cu₂O. ^dAFAC=0.92 obtained from Cu foil.

Figure S2 Experimental (--) and theoretical (..) least-squares refined EXAFS $k^3\chi(k)$ and Fourier transforms for a)VCu:AlPO-5 and b)VCu:ZSM-5 at room temperature 25°C and during C₃H₆-TPR.

V K-edge

Figure S3 Figure 5 Experimental (-) and theoretical (..) least squares refined EXAFS $k^2\chi(k)$ and Fourier transforms for VCu:AIPO-5 and VCu:ZSM-5 at room temperature 25°C.

Table S5 EXAFS least squares refinements	of VCu:AlPO-5 and VCu:Z	LSM-5 at the V K-edge from ir	1 situ C3H6-TPR ^a
--	-------------------------	-------------------------------	------------------------------

Sample	Reaction stage	Shell	Ν	R/Å	$2\sigma^2/\text{\AA}^2$	E _F /eV	R/%
VCu:AlPO-5	RT ^b	V-O	5.3(5)	1.73(1)	0.007(4)	-3(1)	33.76
VCu:ZSM-5	RT ^b	V-O	4.7(4)	1.73(1)	0.003(3)	-2.6(9)	30.65
^a The Least-squ	ares refinements w	vere carried	out at wavenun	nber k= 2-9Å	$^{-1}$ using a k ²	weighting sc	heme.

The goodness of fit, R, is given in %. The standard deviation in the last digit as calculated by EXCURV98 is given in parentheses.^bAFAC=0.58 obtained from NH_4VO_3 .

Studying reversibility: EXAFS refinements from cycling between propene and oxygen

Figure S4 Experimental (--) and theoretical (..) least squares refined EXAFS $k^3\chi(k)$ and Fourier transforms for a)VCu:AlPO-5 at room temperature and from one cycle in propene and O₂ respectively, with the last being in reaction mixture (Prop/O₂).

Sam ple	Reacti on stage	Sh ell	N	R/ Å	2σ 2/ Å ²	E F [/] e V	R / %
	Dehyd ^b	Cu -O	2. 6 (2)	1.9 59 (3)	0.0 09 (1)	- 8. 1(4)	3 2 0 5
		Cu V	0. 7 (1)	2.8 8(1)	0.0 3(2)		
	Prop ^c	Cu -O	0. 8 (1)	1.8 45 (3)	0.0 07 (2)	- 6. 1(6)	4 2 5 5
	Cycle 1	Cu Cu	4. 8 (1)	2.5 09 (2)	0.0 30 (1)		
VCu: AlP O-5	$O_2{}^b$	Cu -O	2. 8 (1)	1.9 28 (3)	0.0 05 (1)	4. 5(2)	2 8 5 8
	Cycle 1	Cu V	0. 4 (1)	2.9 5(1)	0.0 13 (2)		
	Prop ^c	Cu -O	0. 7 (1)	1.8 6(1)	0.0 13 (3)	- 6. 3(5)	3 8 3 5
	Cycle 2	Cu Cu	6. 6 (2)	2.5 19 (2)	0.0 36 (1)		
	O ₂ ^b	Cu -O	2. 8 (1	1.9 15 (2)	0.0 09 (1)	5. 4(4)	3 0 9

Table S6 Table 4 EXAFS least squares refinements of VCu:AlPO-5 at the Cu K-edge during cycling between propene and O_2^a .

)				9
		0.				
Cycle	Cu	7	2.9	0.0		
2		(0(18		
	V	2	1)	(2)		
)				
Prop ^c		0.			-	3
	Cu	7	1.8	0.0	7.	5
	-0	(91	08	0(
	U	1	(3)	(2)	4)	8
)				1
		6.				
Cycle	Cu	6	2.5	0.0		
2 Cycle		(35	35		
5	Cu	1	(2)	(1)		
)				
		2.			-	2
	Cu	8	1.9	0.0	5.	9
$O_2{}^b$	2 ^b Cu	(2(04	5(
	-0	1	1)	(2)	3)	4
)				9
		0.				
Cycle	Cu	4	2.9	0.0		
2		(62	14		
3	V	1	(8)	(1)		
)				
		2.				2
Dron/	Cu	3	1.9	0.0	-	7
	Cu	(46	05	7. 20	
O_2°	-0	1	(2)	(1)	3(4)	7
)			4)	0
		0.				
	Cu	4	2.8	0.0		
		(2(20		
	V	1	1)	(1)		
)				

^aThe least-squares refinements were carried out at wavenumber $k= 2-12 \text{ Å}^{-1}$ using a k³ weighting scheme. The goodness of fit, R, is given in %. The standard deviation in the last digit as calculated by EXCURV98 is given in parentheses. ^bAFAC=0.72 obtained from Cu(OH)₂. ^cAFAC=0.86 obtained from Cu foil.

Valence fraction obtained from linear combination (LC) during C₃H₆-TPR

Linear combination (LC) fit at the Cu K-edge for VCu:AlPO-5, Cu:AlPO-5, VCu:ZSM-5 and Cu:ZSM-5 are shown in Figure S4a and b. Figure S5c show the valence fractions for vanadium in VCu:AlPO-5 and VCu:ZSM-5 obtained from the threshold energy during C_3H_6 -TPR.

Figure S6 Valence fractions of copper and vanadium during C_3H_6 -TPR for a)VCu:AlPO-5 and Cu:AlPO- at the Cu K-edge, b) VCu:ZSM-5 and Cu:ZSM-5, c) VCu:AlPO-5 and VCu:ZSM-5 at the V K-edge. The valence fractions of copper are obtained from LC fit, while vanadium valence fraction is obtained from E_0 .