Electronic Supplementary Information for

Feasibility of occurrence of different types of protonated base pairs in RNA: a quantum chemical study

Antarip Halder,^a Sukanya Halder,^b Dhananjay Bhattacharyya,*^b and Abhijit Mitra*^a

^aCenter for Computational Natural Sciences and Bioinformatics(CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, India

^bComputational Science Division, Saha Institute of Nuclear Physics(SINP), 1/AF, Bidhannagar, Kolkata 700064, India

Contents:

- 1. Details of PDB files used in modeling different base pairs
- 2. Thermodynamic cycle used to calculate $\Delta\Delta G_{\text{prot,sol}}$
- 3. Details of calculation of interaction energy
- 4. Vibrational frequency analysis of hydrogen bond stretching
- 5. ESP and Mulliken partial charges analysis
- 6. NUPARM parameters for optimized geometry of protonated base pairs
- 7. Influence of protonated base pairing on the local aromaticity of the base rings.
- 8. Analysis HOMO and LUMO orbitals of protonated base pairs

1. Details of PDB files used in modeling different base pairs.

BP Geometry	PDB Id	Base Pair Id	Resolution
A+:C W:W Cis	402D	A105:C112	X-RAY DIFFRACTION (1.90 Å)
A+:C W:W Trans	1NKW	A2371:C2403	X-RAY DIFFRACTION (3.10 Å)
A+:G W:H Cis	1NJP	A1061:G2731	X-RAY DIFFRACTION (3.50 Å)
A+:G W:H Trans	2TRA	A46:G22	X-RAY DIFFRACTION (3.00 Å)
A+:G S:H Cis	1FJG	A1001:G1002	X-RAY DIFFRACTION (3.00 Å)
C+:C W:W Cis	1MME	C170d:C30c	X-RAY DIFFRACTION (3.10 Å)
C+:C W:W Trans	1B23	C16:C59	X-RAY DIFFRACTION (2.60 Å)
C+:U W:W Cis	1J5A	C2554:U2490	X-RAY DIFFRACTION (3.50 Å)
C+:A W:W Trans	1NKW	C2403:A2371	X-RAY DIFFRACTION (3.10 Å)
C+:A W:H Trans	1FFK	C505:A509	X-RAY DIFFRACTION (4.20 Å)
C+:G W:H Cis	1GID	C260:G108	X-RAY DIFFRACTION (2.50 Å)
C+:G W:H Trans	1DRZ	C141:G161	X-RAY DIFFRACTION (2.30 Å)
G+:C S:W Cis	1ET4	G326:C224	X-RAY DIFFRACTION (2.30 Å)
G+:G S:H Trans	1DK1	G18:G51	X-RAY DIFFRACTION (2.80 Å)
A+:G H:H Cis	4ABS	G1062:A1088	X-RAY DIFFRACTION (3.10 Å)
A+:G H:H Trans	3UXQ	A2169:G2112	X-RAY DIFFRACTION (3.20 Å)
A:T W:W Cis	1BNA	A18(A) : T7(A)	X-RAY DIFFRATCION (1.9Å)
G:C W:W Cis	1BNA	G16(A) : C9(A)	X-RAY DIFFRATCION (1.9Å)

2. Thermodynamic cycle used to calculate $\Delta\Delta G_{\text{prot,sol}}$

Free energy change of the protonation process ($\Delta\Delta$ Gprot,sol) is calculated as follows:

 $\Delta\Delta G_{\text{prot,sol}} = \Delta\Delta G_{\text{sol}}(BH2^{+}) + \Delta\Delta G_{\text{sol}}(OH^{-}) - \Delta\Delta G_{\text{sol}}(BH) - \Delta\Delta G_{\text{sol}}(H2O)$

Where, standard free energy of solvation ($\Delta\Delta$ Gsol) has been partitioned into two parts,

 $\Delta\Delta G \text{sol} = \Delta\Delta E \text{def} + \Delta\Delta G \text{corr}$

 $\Delta\Delta$ E def is the deformation energy, which is calculated as electronic energy difference (obtained from gas phase calculations) between solvent phase optimized geometry and gas phase optimized geometry.

 $\Delta\Delta$ **G***c***o***r***r** is the correction term, which is the difference between the free energies calculated in gas phase and solvent phase for the solvent phase optimized geometry.

3. Details of calculation of interaction energy.

For the base pairs optimized at B3LYP/6-31G++(2d,2p) level of theory we calculated the single point interaction energy at MP2/aug-ccpVDZ level. The interaction energy (ΔE_{AB}) of a base pair AB formed by the individual bases A and B is defined as,

$$\Delta E_{AB} = E_{AB} - E^0_A - E^0_B$$

where E_{AB} is the total energy of the optimized base pair AB and E^{0}_{A} and E^{0}_{B} are the total energies of the individual bases A and B, in their optimized geometries respectively. This interaction energy was further corrected for Basis Set Superposition Error (BSSE) and deformation energy ($E_{def(AB)}$). BSSE correction of the interaction energy (E^{BSSE}) was done by using standard counterpoise calculations. The deformation energy is represented as,

$$(E_{def(AB)}) = (E^{AB}A - E^{0}A) + (E^{AB}B - E^{0}B)$$

where, E^{AB}_{A} and E^{AB}_{B} are the energies of the bases A and B respectively in the optimized geometry of AB. So the total corrected interaction energy (E^{gas}_{int}) is calculated as,

$$E^{gas}_{int} = \Delta E_{AB} + E^{BSSE} + E_{def(AB)}$$

4. Vibrational frequency analysis of hydrogen bond stretching

Compared to N—H bonds in canonical base pairs (A:T W:W Cis and G:C W:W Cis), in protonated base pairs, red shift in corresponding N(+)—H bond stretching frequency due to hydrogen bond formation is 3-4 times higher for both the N-H --- O and N-H --- N type hydrogen bonds. Influence of protonation (at a ring nitrogen atom) on the other functional groups of the base may be realized from the following observations:

- **1.** N1 protonation of Adenine has enhanced the red shift in N6-H --- O bonds in system 4 and system 5 compared to the N6-H --- O4 bond in canonical AT pair, implying the fact that protonation at ring nitrogen atoms positively influences the hydrogen bond donor sites.
- **2.** N3 protonation of Cytosine positively influences the hydrogen bond donor potential of N4 site (system 9, system 10 and system 13 show remarkable increase in red shift of N4-H --- O bond stretching frequencies and corresponding intensities compared to N4-H --- O6 bond in canonical GC pair) and negatively influences hydrogen bond acceptor potential at O2 site (red shift in N-H --- O2 bond stretching frequencies undergoes a significant decrease in the systems 9,10,11 and 12 compared to N2-H --- O2 bond in canonical GC pair).

Table S1: Shifts in IR frequency corresponding to symmetric stretch of D-H bonds which
participate in D-H···A type hydrogen bond formation.*

SI. No.	Base Pair Geometry	Prot. Site	Hydrogen Bond	v in cm-1	v0 in cm-1	Red shift in cm-1	I KM/mol	I0 KM/mol	I/I0
1	A:T W:W Cis		N6-H O4	3497.04	3680.70	183.66	948.63	132.62	7.15
			С2-Н О2	3233.71	3251.29	17.58	1.47	18.64	0.08
			N1 H-N3	2972.63	3663.74	691.11	2543.28	93.32	27.55
2	G:C W:W Cis		N1-H N3	3301.90	3669.03	367.13	2193.20	78.10	28.08
			N2-H O2	3479.75	3655.71	175.96	1235.34	71.89	17.18
			O6 H-N4	3259.52	3685.51	425.99	183.91	121.55	1.51
3	A+:C W:W Cis	N1	N6-H N3	3254.54	3577.24	322.70	1757.78	186.63	9.42
			N1-H(+) O2	2872.62	3585.52	712.90	2565.32	153.31	16.73
4	A+:C W:W Trans	N1	N6-H O2	3207.63	3577.24	369.61	448.96	186.63	2.41
			N1-H(+) N3	3045.54	3585.52	539.98	1395.79	153.31	9.10
5	A+:G W:H Cis	N1	N6-H O6	3196.42	3577.24	380.82	2727.51	186.63	14.61
			N1-H(+) N7	2925.36	3585.52	660.16	2336.12	153.31	15.24
6	A+:G W:H Trans	N1	N6-H N7	3140.34	3577.24	436.90	3522.90	186.63	18.88
			N1-H(+) O6	2997.17	3585.52	588.35	1647.68	153.31	10.75
7	A+:G S:H Cis	N3	N3-H(+) N7	2877.40	3594.67	717.27	2860.26	93.82	30.49
			С2-Н Об	3188.30	3210.40	22.10	217.20	5.21	41.66
8	C+:C W:H Cis	N3	N4-H N3	3192.43	3587.37	394.94	2262.80	266.97	8.48
			N3-H(+) O2	2931.25	3570.44	639.19	1746.80	82.77	21.10
9	C+:C W:H Trans	N3	N4-H O2	2917.29	3587.37	670.08	3335.95	266.97	12.50
			N3-H(+) N3	2709.51	3570.44	860.93	1303.96	82.77	15.75

			O2 H-N4	3451.90	3599.04	147.14	769.83	70.05	10.99
10	C+:U W:W Cis	N3	N3-H(+) O4	2556.38	3570.44	1014.06	3438.81	82.77	41.55
			O2 H-N3	3438.63	3605.27	166.64	547.94	66.51	8.24
11	C+:A W:W Trans	N3	N3-H(+) N1	1943.64	3570.44	1626.80	4876.60	82.77	58.92
			O2 H-N6	3507.71	3605.48	97.77	444.19	85.40	5.20
12	C+:A W:H Trans	N3	N3-H(+) N7	2368.29	3570.44	1202.15	3776.14	82.77	45.62
			O2 H-N6	3523.52	3605.48	81.96	259.15	85.40	3.03
13	C+:G W:H Cis	N3	N4-H O6	3110.70	3587.37	476.67	2489.66	266.97	9.33
			N3-H(+) N7	2652.92	3570.44	917.52	2856.17	82.77	34.51
14	C+:G W:H Trans	N3	N4-H N7	3077.51	3587.37	509.86	3718.52	266.97	13.93
			N3-H(+) O6	3077.51	3570.44	492.93	3718.52	82.77	44.93
15	G+:C S:W Cis	N3	N2-H N3	3185.54	3597.93	412.39	2061.78	251.76	8.19
			N3-H(+) O2	2869.71	3617.23	747.52	1949.11	110.86	17.58
16	G+:G S:H Trans	N3	N2-H N7	3087.76	3597.93	510.17	4309.20	251.76	17.12
			N3-H(+) O6	3087.76	3617.23	529.47	4309.20	110.86	38.87

*v0 and I0 represent harmonic frequencies (in cm⁻¹) and IR intensities (in KM/mol), respectively, of the unpaired monomers. v and I represent harmonic frequencies and IR intensities, respectively, of the paired systems.

5. ESP and Mulliken partial charges analysis

Table S2: ESP charges at different functional sites of the four RNA bases for their neutral and chargedstates.

Base	Charged State	Functional Sites of Nucleobases							
		N1	N3	N7	N6				
Adenine	Neutral	-0.744	-0.75	-0.558	-0.795				
	N1+	-0.541	-0.532	-0.513	-0.794				
	N3+	-0.588	-0.513	-0.518	-0.767				
	N7+	-0.725	-0.712	-0.221	-0.984				
	-								
		02	N3	N4					
Cytosine	Neutral	-0.624	-0.796	-0.839					
	N3+	-0.472	-0.588	-0.943					
		N3	N7	O6	N1	N2			
Guanine	Neutral	-0.713	-0.494	-0.578	-0.762	-0.773			
	N3+	-0.533	-0.439	-0.426	-0.621	-0.934			
	N7+	-0.748	-0.169	-0.506	-0.719	-0.976			
	N1-	-0.88	-0.537	-0.738	-0.913	-0.842			
	1	1	1		1	1			
		02	04	N3					
Uracil	Neutral	-0.573	-0.584	-0.614					
	N3-	-0.743	-0.783	-0.963					

Table S3: Mulliken charges at different functional sites of the four RNA bases for their neutral and
charged states.

Base	Charged State	Functional Sites of Nucleobases									
		N1	N3	N7	N6						
Adenine	Neutral	-0.294	-0.324	-0.343	-0.250						
	N1+	-0.066	-0.197	-0.295	-0.165						
	N3+	-0.196	-0.101	-0.264	-0.135						
	N7+	-0.206	-0.240	-0.075	-0.208						
		02	N3	N4							
Cytosine	Neutral	-0.403	-0.380	-0.236							
	N3+	-0.272	-0.147	-0.151							
		N3	N7	O6	N1	N2					
Guanine	Neutral	-0.446	-0.275	-0.386	-0.206	-0.309					
	N3+	-0.214	-0.200	-0.240	-0.189	-0.204					
	N7+	-0.390	-0.014	-0.330	-0.201	-0.219					
	N1-	-0.569	-0.300	-0.496	-0.435	-0.331					
		02	04	N3							
Uracil	Neutral	-0.388	-0.356	-0.210							
	N3-	-0.517	-0.495	-0.454							

6. NUPARM parameters for optimized geometry of protonated base pairs.

Sl. No.	Base Pair	Buckle	Open	Propel	Stagger	Shear	Stretch
1	A+:C W:W Cis	0.05	10.40	0.06	0.00	-2.62	2.80
2	C+:C W:W Cis	3.42	9.49	-7.04	0.02	-2.76	2.77
3	A+:G W:H Cis	0.04	-1.91	0.00	0.00	0.41	2.83
4	A+:G S:H Cis	1.85	93.00	1.46	-0.03	4.91	0.81
5	C+:G W:H Trans	0.23	-2.00	0.06	0.00	2.93	2.77
6	C+U W:W Cis	0.00	-15.33	0.00	0.00	2.30	2.91
7	C+:C W:W Trans	-0.02	-4.79	0.05	0.00	-0.14	2.83
8	G+:G S:H Trans	4.12	115.55	-5.03	0.12	-3.09	4.06
9	C+:G W:H Cis	-0.15	-1.02	-0.02	0.00	0.26	2.75
10	A+:G W:H Trans	-0.70	-4.34	1.89	0.00	2.75	2.80

Table S4: NUPARM parameters calculated over B3LYP/6-31G++(2d,2p) level optimized geometries of the
protonated base pairs.

7. Influence of protonated base pairing on the local aromaticity of the base rings.

Table S5: NICS(1) values of the pyrimidine (Pyr.) and imidazole (Imi.) rings of the bases participating in protonated base pairing have been compared with their NICS(1) values when they participate in formation of canonical GC and AT/U base pairs. Intrinsic interaction energies of the protonated base pairs calculated at MP2/aug-cc-pVDZ//B3LYP/6-31G++(2d,2p) level of theory are also given.

Sl.		Prot.			NICS(
No.	Base Pair	Site	Base	Ring	Protonated BP	Canonical BP	Difference
1	A(+)·C W·W Cis	N1	A(+)	Pyr.	-6.80	-7.50	-0.70
	(-32.1 kcal/mol)		A(+)	Imi.	-9.87	-9.54	0.33
	``````````````````````````````````````		С	Pyr.	-3.46	-2.65	0.81
2	C(+):C W:W Cis	N3	C(+)	Pyr.	-2.24	-2.65	-0.41
	(-35.2 kcal/mol)		С	Pyr.	-3.96	-2.65	1.31
3			A(+)	Pyr.	-6.32	-7.50	-1.18
	A(+):G w:H CIS (-34.5 kcal/mol)	N1	A(+)	Imi.	-9.81	-9.54	0.27
		111	G	Pyr.	-3.75	-3.50	0.25
			G	Imi.	-8.75	-8.62	0.13
4		NIO	A(+)	Pyr.	-6.96	-7.50	-0.54
	A(+):GS:HCIS	N3	A(+)	Imi.	-9.75	-9.54	0.21
	(-50.1 KCal/1101)		G	Pyr.	-3.37	-3.50	-0.13
			G	Imi.	-8.69	-8.62	0.07
5	C(+)·C W·H Trans	M2	C(+)	Pyr.	-2.12	-2.65	-0.53
	(-36.4 kcal/mol)	113	G	Pyr.	-3.89	-3.50	0.39
			G	Imi.	-8.65	-8.62	0.03
6	C(+):UW:WCis	N3	C(+)	Pyr.	-2.71	-2.65	0.06
	(-26.3 kcal/mol)		U	Pyr.	-2.19	-2.14	0.05
7	C(+):C W:W Trans	N3	C(+)	Pyr.	-2.35	-2.65	-0.30
	(-42.5 kcal/mol)		С	Pyr.	-3.18	-2.65	0.53
8		210	G(+)	Pyr.	-2.30	-3.50	-1.20
	G(+): $GS:H$ Trans	N3	G(+)	Imi.	-9.28	-8.62	0.66
	(-40.7 KCal/III01)		G	Pyr.	-4.08	-3.50	0.58
			G	Imi.	-8.65	-8.62	0.03
9	C(+)·C W·H Cis	N3	C(+)	Pyr.	-2.35	-2.65	-0.30
	- U(+):G W:H UIS (-39.9 kcal/mol)	113	G	Pyr.	-3.95	-3.50	0.45
	· · · · · · · · · · · · · · · · · · ·		G	Imi.	-8.68	-8.62	0.06
10		NT4	A(+)	Pyr.	-6.83	-7.50	-0.67
	A(+):G W:H Trans (-37.6 kcal/mol)	NI	A(+)	Imi.	-9.31	-9.54	-0.23
			G	Pyr.	-4.03	-3.50	0.53
			G	Imi.	-8.58	-8.62	-0.04



Fig. S1: Distribution of HOMO and LUMO orbitals of protonated base pairs as obtained from NBO analysis of B3LYP/6-31G++(2d,2p) optimized geometry.