SUPPORTING INFORMATION

On the Structure of Ce-containing Silicophosphate

Glasses: a Core-Shell Molecular Dynamics

Investigation.

Elisa Gambuzzi and Alfonso Pedone*

Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia

via G. Campi, 183; 41125 Modena (Italy)

Table S1. Comparison between the experimental densities $(\rho_{exp})^1$ and the ones computed with the PRIVEN method (ρ_{PRIVEN}) and after NPT MD simulations at 300K (ρ_{NPT}). The percentage difference between ρ_{exp} and ρ_{NPT} is also reported.

Glass	ρ_{exp} (g/cc)	ρ _{PRIVEN} (g/cc)	$\rho_{\rm NPT}$ (g/cc)	[(ρ _{NPT} -
				$\rho_{exp})/\rho_{xep}] \cdot 100$
CSP2	2.58 (±0.01)	2.54	2.50	- 3.10 %
CSP3	2.70 (±0.01)	2.66	2.61	- 3.33 %
CSP4	2.80 (±0.01)	2.83	2.73	- 2.50 %
CSP6	2.98 (±0.01)	3.30	3.15	+5.70 %
CSP9	3.08 (±0.02)	3.36	3.19	+ 3.57 %

Table S2. Coordination number distributions of Ce^{3+} and Ce^{4+} calculated on 3 simulation boxes per composition (standard deviations in parenthesis).

	5	6	7	8	9
		Ce ³	+		
CSP2	5.3(0.8)	37.0(13.3)	45.9(11.4)	11.7(4.4)	0.1 (0.4)
CSP3	5.6(4.4)	41.6(5.5)	45.1(4.3)	7.2(5.5)	0.2(0.1)
CSP4	7.6(2.5)	43.6(4.3)	39.7(0.9)	8.6(2.8)	0.5(0.1)
CSP6	7.2(1.9)	40.4(0.3)	42.0 (1.3)	9.5(1.7)	0.9 (0.1)
CSP9	5.8(1.2)	44.7(4.1)	38.5 (3.4)	9.6(2.8)	1.4 (0.5)
		Ce ⁴	+		
CSP6	0.0(0.0)	0.0(0.0)	66.7(11.3)	33.3(4.1)	0.0(0.0)
CSP9	0.0(0.0)	0.0(0.0)	34.4(10.6)	65.5(10.5)	0.1(0.1)

Table S3. Qⁿ species distributions of P and Si. Populations are given in percentage (pop. %) with respect to the total number of P or Si in the models.

	Q^0	Q^1	Q^2	Q^3	Q^4		
Р							
CSP2	0.0	0.7(0.1)	33.2(2.5)	60.2(3.1)	4.9(0.4)		
CSP3	0.4(0.1)	2.3(0.3)	45.2(1.3)	49.1(0.2)	2.3(0.5)		
CSP4	0.7(0.1)	4.9(0.5)	53.8(0.3)	38.8(1.5)	1.1(0.9)		
CSP6	1.9(0.4)	14.2(1.2)	67.9(2.5)	15.2(0.5)	0.0(0.0)		
CSP9	2.2(0.3)	16.7(1.4)	69.0(3.9)	10.7(1.7)	0.0(0.0)		
		Si					
CSP2	0.0(0.0)	0.0(0.0)	0.0(0.0)	4.7(1.0)	89.5(1.6)		
CSP3	0.0(0.0)	0.0(0.0)	0.0(0.0)	6.5(0.5)	91.2(1.1)		
CSP4	0.0(0.0)	0.0(0.00)	0.0(0.00)	5.2(0.1)	90.7(0.3)		
CSP6	0.0(0.0)	0.0(0.0)	0.0(0.0)	5.2(3.9)	90.8(4.0)		

Glasses	n _{P(Qn)}	Ce ₂ O ₃ (mol%)	Si/P	Ce/P	NBO ^P /Ce
CSP2	2.7	2.2	0.867	0.06	16.61
CSP3	2.5	4.1	0.711	0.11	11.08
CSP4	2.3	7.5	0.508	0.17	8.29
CSP6	2.0	18.2	0.140	0.29	6.10
CSP9	1.9	28.3	0.004	0.33	6.15

Table S4. Average number *n* of BOs bonded to P atoms, $\overline{n}_{P(Qn)}$, Ce₂O₃ content, Si/P, Ce/P ratios and the average number of NBOs bonded to P and available for Ce coordination, NBO^P/Ce.

Table S5. $R_P^{P/Si}$ and $R_{Si}^{P/Si}$ values as a function of the n°Ce/(n°P+n°Si) ratio, which characterizes each composition.

n°Ce/(n°P+n°Si)	R _P ^{P/Si}	R ^{P/Si}
0.03 (CSP2)	0.492	0.864
0.06 (CSP3)	0.496	0.828
0.11 (CSP4)	0.507	0.713
0.25 (CSP6)	0.495	0.606

Table S6. Populations of Q^n sites (4-coordinated former cations bonded to *n* bridging oxygens), 5-coordinated (P⁵) and 6-coordinated (H⁶) former cations in the CSP models. Comparing Rigid ion and Core Shell output data of statistical analysis performed as mentioned in the *Method* section.

	Q^0	Q^1	Q^2	Q^3	Q^4	P ⁵	H^{6}
			Si				
Rigid ion	0.0	0.0	0.3	12.0	83.3	4.4	0.0
Core-Shell	0.0	0.0	0.0	6.9	89.2	3.9	0.0
			Р				
Rigid ion	0.3	2.9	29.9	49.8	16.5	0.5	0.0
Core shell	0.4	3.5	59.7	35.7	0.7	0.0	0.0

U						
	Q^0	Q^1	Q^2	Q^3	Q^4	
Experimental ²	0	4	96	0	0	
Rigid ion	1	23	51	21	5	
Core shell	0	11	80	9	0	

Table S7. Comparison of Q^n site population of the CaO-P₂O₅ glass determined by NMR experiments, rigid ion and core-shell MD simulations.

Table S8. Description of the second coordination shells of Ce^{3+} and Ce^{4+} by the Rigid ion³ and the Core Shell (this work) models. Cutoff distances for coordination numbers are the same adopted by Du et al³: 4.37/4.00 Å for Ce^{3+}/Ce^{4} .

	Ce ³⁺		Ce^{4+}	
	Si	Р	Si	Р
Rigid Ion	1.2	5.7	1.2	4.9
Core shell	0.4	6.4	1.0	6.8

Table S9. Analysis of Ce³⁺ second coordination sphere within a 5.00 Å radius cutoff. Coordination numbers with respect to P, (CN_{Ce}^{P}) , Si, (CN_{Ce}^{Si}) , and Al, (CN_{Ce}^{Al}) versus the amount of Ce₂O₃ (mol %) in the composition.

Ce ₂ O ₃ mol %	CN_{Ce}^{P}	CN_{Ce}^{Si}	CN_{Ce}^{Al}
		Ce ³⁺	
2.2 (CSP2)	7.99(0.26)	1.30(0.12)	0.08(0.05)
4.1 (CSP3)	7.91(0.15)	1.56(0.07)	0.12(0.06)
7.5 (CSP4)	8.22(0.15)	1.28(0.14)	0.10(0.10)
18.2 (CSP6)	8.93(0.03)	0.64(0.02)	0.13(0.01)
23.8 (CSP9)	8.71(0.42)	0.00(0.00)	0.16(0.02)

М			Pop %		
	CSP2	CSP3	CSP4	CSP6	CSP9
1	95.5	92.8	84.8	60.4	60.8
2	4.5	5.8	7.6	18.9	20.1
3	0.0	1.4	4.8	11.0	8.4
4	0.0	0.0	2.8	5.5	3.4
5	0.0	0.0	0.0	2.4	1.6
6	0.0	0.0	0.0	0.6	1.6
7	0.0	0.0	0.0	0.0	1.1
8	0.0	0.0	0.0	0.6	0.6
9	0.0	0.0	0.0	0.0	0.0
10	0.0	0.0	0.0	0.0	0.6
11	0.0	0.0	0.0	0.0	0.6
12	0.0	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	0.0	0.6
14	0.0	0.0	0.0	0.6	0.6
m	1.05	1.09	1.26	1.76	1.99

Table S10. The relative percentage population, pop. %, of Ce clusters containing m Ce atoms.

Figure S1. Ring size analysis for Si (CSP2, CSP3, CSP4, CSP6), P (all glasses) and *all* formers without distinction. Different colors mean different compositions. Si rings analysis for CSP9 was omitted because of the small amount of SiO₂ in the glass.

Figure S2. The P-O-P intertetrahedral angle distributions of the CaO- P_2O_5 glass obtained with a Reverse Monte Carlo approach on diffraction data⁴ is compared to those provided by the RI model (green curves) and the CS model (red curves).

Bibliography

- (1) Rygel, J. L. Cerium clustering and radiation damage resistance in aluminophosphate and silicophosphate glasses. PhD. Thesis . The Pennsylvania State University.
- (2) Pickup, D. M.; Ahmed, I.; Guerry, P.; Knowles, J. C.; Smith, M. E.; Newport, R. J. The structure of phosphate glass biomaterials from neutron diffraction and 31P nuclear magnetic resonance data. *J. Phys.: Condens. Mat.* **2007**, *19* (14), 415116-415116.
- (3) Du, J.; Kokou, L.; Rygel, J. L.; Chen, Y.; Pantano, C. G.; Woodman, R.; Belcher, J. Structure of Ce phosphate glasses: molecular dynamics simulation. *J. Am. Cer. Soc.* **2011**, *94* (8), 2393-2401.
- (4) Wetherall, K. M.; Pickup, D. M.; Newport, R. J.; Mountjoy, G. The structure of calcium metaphosphate glass obtained from x-ray and neutron diffraction and reverse Monte Carlo modelling. *J. Phys.: Condens. Mat.* **2009**, *21* (3), 035109.