Supplementary Information

Ab initio molecular dynamics study of thermal decomposition of 3,6di(azido)-1,2,4,5-tetrazine

Qiong Wu, Weihua Zhu*, Heming Xiao

Institute for Computation in Molecular and Materials Science and School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Fig. S1 Time dependences of total potential energy in the 5 ps of equilibration at 300 K.

Fig. S2 Time dependences of total kinetic energy in the 5 ps of equilibration at 300 K.

Fig. S3 Time dependences of temperature in the 5 ps of equilibration at 300 K.

Fig. S4 Rough estimating of change trend of pressure as a function of time in the system of $1 \times 2 \times 2$ supercell.

Bonds	Mulliken	BDE (kJ·mol ⁻¹)		
N1-N2	1.300	743.9		
N2-N3	0.810	728.9		
N3-C4	0.790	370.6		
C4-N5	0.880	258.4		
N5-N6	0.870	332.6		

Table S1 The calculated Mulliken bond orders and bond dissociation energies (BDE) of unimolecular DiAT at 300 K.

Initiation reactions	Observe	Observed times	
	$1 \times 2 \times 2$ supercell	$1 \times 3 \times 2$ supercell	
N-N ₂ cleavage	16	9	
Ring opening	6	2	
Isomerization	2	1	

Table S2 The observed times of the three initiation reactions from the simulations by using a time step of 0.1 fs.

Table S3. A comparison of the numbers of released nitrogen gas in 0.5 and 1.0 ps for systems of $1 \times 2 \times 2$ supercell and $1 \times 3 \times 2$ supercell by using a time step of 0.1 and 1.0 fs.

Systems	Numbers of released nitrogen gas	
	0.5 ps	1.0 ps
$1 \times 2 \times 2$ supercell (1.0 fs) ^a	22	26
$1 \times 2 \times 2$ supercell (0.1 fs) ^a	21	25
$1 \times 3 \times 2$ supercell (1.0 fs)	26	32
$1 \times 3 \times 2$ supercell (0.1 fs)	24	31

^a The values are the averaged results of the three independent simulations.

Table S4. The global endothermic reactions rate constant (τ_{endo}) and the time when the maximum in total energy is obtained (t_{max}) for systems of $1 \times 2 \times 2$ supercell and $1 \times 3 \times 2$ supercell by using a time step of 1.0 fs and 0.1 fs.

Systems	t_{\max} (ps)	$ au_{ m endo}\left(m ps ight)$
$1 \times 2 \times 2$ supercell (1.0 fs) ^a	0.20	0.1
$1 \times 2 \times 2$ supercell (0.1 fs) ^a	0.15	0.08
$1 \times 3 \times 2$ supercell (1.0 fs)	0.27	0.14
$1 \times 3 \times 2$ supercell (0.1 fs)	0.25	0.12

^a The values are the averaged results of the three independent simulations.