Evaluation of composite schemes for CCSDT(Q) calculations of interaction energies in noncovalent complexes

Supplementary information

Lucia Demovičová¹, Pavel Hobza^{2,3}, Jan Řezáč^{2*}

	MP2	CCSD	CCSD[T]	CCSD(T)	CCSDT	CCSDT[Q]	CCSDT(Q)
Li ₂ H ₂	-0.071	-0.055	-0.072	-0.068	-0.071	-0.071	-0.072
	-0.096	-0.082	-0.100	-0.100	-0.105	-0.105	-0.106
	-0.111	-0.094	-0.117	-0.117	-0.122	-0.122	-0.123
$BH_3 \dots H_2$	-0.128	-0.134	-0.148	-0.148	-0.151	-0.151	-0.151
	-0.145	-0.150	-0.168	-0.168	-0.172	-0.172	-0.173
	-0.154	-0.155	-0.176	-0.176	-0.180	-0.180	-0.181
$\operatorname{BeH}_2 \dots \operatorname{H}_2$	-0.122	-0.121	-0.136	-0.136	-0.140	-0.140	-0.140
	-0.144	-0.144	-0.162	-0.162	-0.167	-0.167	-0.167
	-0.156	-0.152	-0.173	-0.173	-0.178	-0.178	-0.179
CH_4 dimer	-0.744	-0.709	-0.795	-0.792	-0.795	-0.792	-0.798
	-0.847	-0.778	-0.887	-0.885	-0.888	-0.885	-0.894
	-0.940	-0.850	-0.980	-0.981	-0.982	-0.979	-0.990
LiH H ₂	-0.198	-0.141	-0.173	-0.172	-0.182	-0.183	-0.183
	-0.260	-0.227	-0.268	-0.267	-0.280	-0.280	-0.281
	-0.302	-0.258	-0.308	-0.308	-0.320	-0.320	-0.322
Ne dimer	-0.041	-0.047	-0.052	-0.051	-0.052	-0.051	-0.051
	-0.057	-0.061	-0.068	-0.068	-0.068	-0.068	-0.068
	-0.084	-0.093	-0.106	-0.105	-0.106	-0.105	-0.106

Table S1: Correlation interaction energies of dispersion-bound complexes [kcal/mol]. For each complex, the results obtained in $6-31G^{**}(0.25, 0.15)$, aug-cc-pVDZ and aug-cc-pVTZ basis sets are listed.

	MP2	CCSD	CCSD[T]	CCSD(T)	CCSDT	CCSDT[Q]	CCSDT(Q)
H ⁻ LiH	1.086	3.181	3.015	3.021	2.944	2.946	2.939
	0.422	2.240	2.077	2.079	2.008	2.010	2.003
	-0.353	1.380	1.167	1.168	1.092	1.094	1.085
LiH Li ⁺	0.942	2.075	2.075	2.074	2.074	2.074	2.074
	0.027	0.461	0.459	0.459	0.458	0.458	0.458
	-0.208	0.300	0.290	0.289	0.287	0.287	0.287
F⁻ HF	10.137	120.019	11.654	10.995	11.187	11.042	11.214
	6.840	6.284	7.418	6.852	6.989	6.805	7.080
	5.341	4.293	5.384	4.940	4.976	4.808	5.069
HCN Li ⁺	2.240	1.981	2.061	2.175	2.122	2.244	2.229
	1.984	1.883	2.105	2.166	2.130	2.222	2.213
	1.844	1.502	1.762	1.811	1.769	1.863	1.861
$\mathrm{C_2H_2} \dots \mathrm{Li^+}$	2.214	2.038	2.130	2.116	2.093	2.166	2.162
	2.124	1.810	2.018	2.005	1.985	2.034	2.040
	1.782	1.294	1.528	1.508	1.471	1.517	1.528
$\mathbf{C_2}\mathbf{H_2}\dots\mathbf{H^{\text{-}}}$	-0.578	0.177	-0.258	-0.222	-0.284	-0.219	-0.261
	-1.007	0.487	-0.040	-0.029	-0.078	-0.042	-0.099
	-1.543	-0.071	-0.646	-0.635	-0.684	-0.651	-0.717

Table S2: Correlation interaction energies of complexes stabilized by electrostatic interaction [kcal/mol]. For each complex, the results obtained in 6-31G**(0.25,0.15), aug-cc-pVDZ and aug-cc-pVTZ basis sets are listed.

	MP2	CCSD	CCSD[T]	CCSD(T)	CCSDT	CCSDT[Q]	CCSDT(Q)
NH ₃ dimer	-1.063	-0.924	-1.080	-1.072	-1.072	-1.063	-1.076
	-1.269	-1.020	-1.223	-1.216	-1.217	-1.208	-1.227
	-1.552	-1.299	-1.545	-1.546	-1.541	-1.533	-1.558
H ₂ O dimer	-0.195	-0.067	-0.178	-0.196	-0.180	-0.174	-0.184
	-0.776	-0.567	-0.738	-0.738	-0.731	-0.722	-0.740
	-1.122	-0.930	-1.153	-1.153	-1.149	-1.137	-1.163
LiH dimer	0.332	1.256	1.164	1.167	1.127	1.128	1.124
	-0.305	0.090	-0.007	-0.007	-0.045	-0.045	-0.045
	-0.572	-0.086	-0.207	-0.208	-0.247	-0.246	-0.251
HF dimer	0.463	0.515	0.492	0.442	0.469	0.460	0.460
	-0.185	-0.120	-0.204	-0.224	-0.211	-0.210	-0.217
	-0.470	-0.434	-0.565	-0.573	-0.571	-0.564	-0.580
HCN HF	-0.075	0.102	0.088	0.113	0.108	0.115	0.110
	-0.696	-0.362	-0.420	-0.407	-0.411	-0.404	-0.412
	-1.447	-0.987	-1.290	-1.255	-1.256	-1.228	-1.268
$\operatorname{BeH}_2 \dots \operatorname{LiH}$	0.153	0.429	0.398	0.400	0.392	0.393	0.392
	-0.329	-0.297	-0.329	-0.328	-0.335	-0.335	-0.336
	-0.319	-0.203	-0.245	-0.246	-0.255	-0.255	-0.257

Table S3: Correlation interaction energies os hydrogen-bonded and lithium-bonded complexes [kcal/mol].For each complex, the results obtained in $6-31G^{**}(0.25, 0.15)$, aug-cc-pVDZ and aug-cc-pVTZ basis sets are listed.

Optimized geometries used

Li ₂ -H ₂ Li Li H H	-1.3700 -1.3700 4.4708 3.7317	000 1.36 000 -1.36 845 0.00 708 0.00	9244 0 9244 0 0000 0 0000 0	.000000 .000000 .000000 .000000
BH ₃ -H ₂ B H H H H H	0.000000 0.000000 0.000000 0.000000 0.000000	$\begin{array}{cccc} 0 & 0.0000 \\ 0 & 0.0000 \\ 1.0283 \\ 0 & -1.0283 \\ 0 & 0.0000 \\ 0 & 0.0000 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93908 93284 87062 87062 05643 44736
BeH ₂ -H ₂ H Be H H H	0.000000 0.000000 0.000000 0.000000 0.000000	0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000	00 2.49 00 1.19 00 -0.19 00 -3.13 00 -3.8	95481 68445 58980 35511 74769
CH4 dime C -0.0 H 0.5 H 0.5 H -1.0 H 0.0 C 0.0 H -0.0 H -0.5 H 1.0	r 000000000 012741150 025482300 000000000 000000000 000000000 000000	$\begin{array}{c} 0 & 0.00000 \\ 0 & 0.88809 \\ 0 & -0.88809 \\ 0 & 0.00000 \\ 0 & -0.00000 \\ 0 & -0.00000 \\ 0 & 0.00000 \\ 0 & 0.88809 \\ 0 & -0.88809 \\ 0 & -0.00000 \end{array}$	00000 1.8 3730 1.4 3730 1.4 00000 1.4 00000 2.9 00000 -1.8 00000 -2.9 3730 -1.4 3730 -1.4 00000 -1.4 00000 -1.4 00000 -1.4	819014570 454767430 454767430 907220720 819014570 907220720 454767430 454767430 454767430
LiH-H ₂ Li H H H	0.000000	0.0000 0.0000 0.0000 0.0000	00 1.88 00 0.29 00 -2.58 00 -3.32	86217 56553 87475 27729
Ne dimer Ne 0. Ne 0.	000000	0.000000 0.000000	1.547000 -1.547000	0 0
H ⁻ - LiH H 0. Li 0. H 0.	000000 000000 000000	0.000000 0.000000 0.000000	0.1148 1.8774 3.6403	805 476 119
LiH- Li ⁺ H 0.0 Li 0.0 Li 0.0	000000	0.000000 0.000000 0.000000	0.00000 -1.67163 1.67163	00 11 11
F HF F 0.0 H 0.0 F 0.0	000000	0.000000 0.000000 0.000000	1.1436979 0.0043353 -1.1350333	938 379 317

HCN Li N C H	_	L: 0. 0. 0.	. 0 . 0 . 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	00			0 0 0		0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 1 0		-	-3 -1 0		0 0 0 1	0 7 5	4 0 8 3	0 2 8 4	2 3 4 1	9 1 8 2	9 1 1 9	3: 3: 4: 2:	1 9 6 4
C ₂ H ₂ H H C C LI	_	L	i+		0 0 0 0		0 0 0 0	0 0 0 0	00) () () () ()))			_ _ _	0 0 0 2		2 2 1 1	1 1 1 5	1 1 6 5	0 0 5 5 1	7 7 0 5	6 6 0 2			_	·1 1 0 0		6 6 6 0	7 7 1 0	7 7 0 0	1 1 1 0	6 6 5 5 0	2 2 6 0		
C ₂ H ₂ H H C C H	_	H	-	0 0 0 0		0 0 0 0	0 0 0 0	0 0 0 0	00)))				0 0 0 0		0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0			-	1 -1 -0 -3		9 4 8 3	2 5 6 2	1 5 7 9	3 8 6 5 9	9 8 4 7 6	9 9 7 2 3			
NH ₃ N H H N H H H	din -0 0 0 0 -0 -0 -0	me).().1).1).().().().().1).().().().().().().().().().().().().()	r) 4 12 55) 4 12 55 12	9 2 2 9 9 2 9 2 9 2	9 9 9 9 8 9 9 8 9	8 6 8 8 6 8 6	1 2 2 5 1 2 5 2	26682686	90 50 90 50 90 50 50			1 2 2 0 1 2 0 2	· · · · · · · · ·	5 1 1 8 5 1 8 1	86668666	7 8 8 7 8 2 8	04430434	96659656	3 0 2 3 0 2 0	2 1 9 2 1 9 1	3 8 8 8 8 8 8 8 8			-	0 0 0 0 0 0		0 8 0 0 8 0 8	0 1 0 0 1 0	0 1 0 0 1 0 1	0 0 0 0 0 0 0	05500505	0 9 0 9 0 9 0 9 0 9	0 7 7 0 7 7 7 7	0 0 6 0 0 0 6 0 0 0 6 0	0 0 0 0 0 0
H ₂ O O H H O H H	din -0 0 0 -0 -0	me).().().().().4	r)6)6)6)6 10	658266	9 7 8 5 9 9	9 3 5 4 6	9 4 5 5 5	1 2 1 7 4	4 (7 (0 (0 (_	0 0 0 0		0 0 0 7 7	0 0 0 6 6	0 0 0 0 0	0 0 0 1 1	0 0 0 7 7	0 0 0 8 8	0 0 0 4 4	0 0 0 1 1	0 0 0 0		-	1 1 0 -1 -1		4 8 5 4 7 7	9 6 2 7 7	4 5 2 1 1	3 8 1 7 7	5 6 4 3 4 4	4 6 2 2 4 4	7 3 7 5 5	4) 9) 7) 8) 0)	0 0 0 0 0
LiH Li H Li H	di 0. 0. 0.	.me 00 00 00	er 00 00 00	0 0 0	0 0 0	0 0 0).).).	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0						0. 1. 3. 1.	.0.3)0 56 37 76	0 57 57	0 1 7 8	000000000000000000000000000000000000000	0 0 0						
HF (H F H F	dim C C C C	nei).().().(0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	00		-	0 0 0		8 0 1 0	0 4 2 0	2 5 0 9	6 9 4 7	7 6 0 6	9 6 7 9	8 6 8 4	2 6 7 5	0 0 0		-	1 1 -0	•	6 3 4 4	9 4 9 0	5 0 0 4	2 3 8 2	9 4 2 4	3 8 9	2 1 4 7	9) 8) 0) 8)	0 0 0
HCN H C N H F		HH).().().().(0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	000000000000000000000000000000000000000			0 0 0 0	• • •	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0		-	-2 -1 -0 2		9 8 7 0	5 3 9 2	6 8 7 6	1 2 5 2	8 9 4 9 5	1 8 9 5	1 7 8 4 0	4 1 5 2	6 1 9 7 6
BeH ₂ H Be H Li H	2-L	ін ((((0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0			0 0 0 0 0	• • •	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0				2 1 0 -1	2.	7417	25 4 1 5 8	9 3 4 2 8	9 2 8 9	7 5 0 1	2 7 2 7 7					