x	1 ‰	5 ‰	1 %	5 %
$B_0 = 0.13 T$	5.7 104	8.1 104	4.6 10 ⁵	1.2 106
$B_0 = 0.24 T$	3.3 104	1.1 105	3.4 105	8.1 106

Table 1-SI. Coefficient (in s⁻¹K⁻¹) of the linear fit of the variation of $\sqrt{\rho_1 \rho_2}$ with temperature in La_{1-x}Gd_xPO₄ for four gadolinium concentrations and two measuring fields.

$T(\mathbf{K})$	12	15	20	30
$B_2 (\mathrm{mT})$	~ 0.1	0.6	3	18
$\rho_2(s^{-1})$	$\sim 6.5 \ 10^{6}$	3.8 107	1.9 108	1.15 109
τ_2 (ns)	~ 160	26	5.3	0.89

Table 2-SI. Temperature broadening of the ESR line of LaPO₄:Nd 1‰ determined by fitting the lines by the convolution of the 8 K line by a Lorentzian line of width B_2 . The transverse relaxation rate (ρ_2) and time (τ_2) are related to the broadening width B_2 by $\rho_2 = 1/\tau_2 = \gamma_{Nd} B_2$.

<i>T</i> (K)	4.6	5.5	8.0	10.0	12.0
$B_{\rm s}({\rm mT})$	6 10-4	1.2 10-3	0.010	0.047	0.084
$\sqrt{\rho_1 \rho_2}$ (s ⁻¹)	3.9 10 ⁴	7.3 104	6.4 10 ⁵	3.0 106	5.3 106
$\sqrt{\tau_1 \tau_2}$ (ns)	2.6 104	1.4 104	1.6 10 ³	330	190

Table 3-SI. Saturation of the ESR line of LaPO₄:Nd 1‰. The saturation field B_s is determined by fitting the variation of the intensity of the ESR signal at 0.23 T as a function of the microwave power using Eq. (1). The longitudinal and transverse relaxation rates (ρ_1 , ρ_2) and times (τ_1 , τ_2) are related to B_s by $\sqrt{\rho_1 \rho_2} = 1/\sqrt{\tau_1 \tau_2} = \gamma_{Nd} B_s$.

Figure Caption

Figure 1-SI. Variation of the ³¹P NMR signal intensity without MAS rotation in $La_{1-x}Nd_xPO_4$ for *x* varying from 0 to 10%. The broken line is the linear adjustment.

Figure 2-SI. Details of the ESR spectra of LaPO₄:Gd at 20 K and 30 dB for three Gd^{3+} concentrations: 1‰ (a), 1% (b) and 5% (c). The 1% and 5% spectra were fitted (broken red lines) by the convolution of the 1‰ spectrum with Lorentzian lines 2.5 mT and 16 mT linewidths, respectively.

Figure 3-SI. (a) Temperature variation of the main part of the ESR spectrum of $La_{0.999}Nd_{0.001}PO_4$ at 20 dB. (b) Fit of the 20 K spectrum by the convolution of the 8 K spectrum with a lorentzian line of 3 mT linewidth.

Figure 1-SI. Variation of the ³¹P NMR signal intensity without MAS rotation in $La_{1-x}Nd_xPO_4$ for *x* varying from 0 to 10%. The broken line is the linear adjustment.

Figure 2-SI. Details of the ESR spectra of LaPO₄:Gd at 20 K and 30 dB for three Gd^{3+} concentrations: 1‰ (a), 1% (b) and 5% (c). The 1% and 5% spectra were fitted (broken red lines) by the convolution of the 1‰ spectrum with Lorentzian lines 2.5 mT and 16 mT linewidths, respectively.

Figure 3-SI. (a) Temperature variation of the main part of the ESR spectrum of $La_{0.999}Nd_{0.001}PO_4$ at 20 dB. (b) Fit of the 20 K spectrum by the convolution of the 8 K spectrum with a lorentzian line of 3 mT linewidth.