Supplemental information

Monitoring hydroquinone/quinone redox cycling by single molecule fluorescence spectroscopy

Figure S1 (a) Typical background corrected single-molecule fluorescence trajectories extracted from the experiment with immobilized substrate **4** in 10 mM MOPS buffer (pH=7.4) in absence of $[Cu(phen)_2]^{2+}$ and cysteine, ($\lambda ex = 532 \text{ nm} (300 \,\mu\text{W})$, emission: 555 - 615 nm, exposure time: 100 ms, frame rate: 7.4 Hz, RT. (b) Control experiment (bulk) with the bare Rhodamine derivative (R = H) upon successive addition of $[Cu(phen)_2]^{2+}$ and cystein (10 mM MOPS buffer ,pH=7.4, RT).

Figure S2 Top: Absorbance spectra of **1** (solid line, 10 μ M in water pH 7, buffer <u>10 mM</u> MOPS) and of **1-BQ** the benzoquinone form of **1** (dashed line), prepared in situ by oxidation with 1 mM [(phen)₂Cu]²⁺ as described in reference [22]. Bottom: Fluorescence spectra of **1** (solid line, 10 μ M in water pH 7, buffer <u>10 mM</u> MOPS) and of **1-BQ**, the benzoquinone form of **1**, prepared in situ by oxidation with 1 mM [(phen)₂Cu]²⁺. λ ex = 567 nm. Quantum yield of the benzoquinone form **1-BQ** is 0.18 relative to hydroquinone **1**.