Formation and Sintering of Pt Nanoparticles on Vicinal Rutile TiO₂ Surfaces

Supporting Information

Felix Rieboldt, Stig Helveg, Ralf Bechstein, Lutz Lammich, Flemming Besenbacher,

Jeppe Vang Lauritsen, and Stefan Wendt*

*Corresponding Author

E-mail: swendt@phys.au.dk

Figure S1. XPS Pt 4f (a) and Ti 2p (b) spectra of the clean (black), freshly Pt covered (red) and subsequently at 800 K annealed (yellow) HR-TiO₂ (110) surface. These XPS data indicate that no Pt was lost during vacuum-annealing. Similar results were obtained for the SR-TiO₂ (110) surface and the vicinal (870) and (771) surfaces. The peak at 76 eV BE in the Pt 4f spectrum of clean HR-TiO₂ arose from the sample holder (tantalum).

Additional STM data, showing the evolution of an SR-TiO₂ (110) surface upon 10 L O₂ exposure at \sim 108 K, followed by vacuum-annealing at various temperatures. Clearly, O_{br} vac.'s re-appear in substantial amounts only following vacuum-annealing at \sim 700 K.

Figure S2. Zoom-in STM images (45 Å × 45 Å) of a clean TiO₂ (110) acquired after 22 preparation cycles (a), after 10 L O₂ exposure at ~108 K to clean TiO₂ (110) (b), after subsequent vacuum-annealing at ~450 K (c), ~520 K (d), ~600 K (e) and ~700 K (f), respectively. All the annealing experiments were conducted within the same series of STM experiments. The annealing time was in each case 2 min. Examples for O_{br} vac.'s, O_{ot} adatoms, and TiO_x species are indicated directly in the STM images.