Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

PCCP

ARTICLE

Decomposition of Nitrous Oxide on Fe-doped Boron Nitride Nanotubes: The Ligand Effect

Cite this: DOI: 10.1039/x0xx00000x

Natcha Injan,^a Jakkapan Sirijaraensre^b and Jumras Limtrakul*bc

Table S1. Electronic energies with zero-point energy (ZPE) and computed $\langle S^2 \rangle$ values of various spin states of Fe_(B)-BNNT and Fe_(N)-BNNT.

System	Spin multiplicity	Relative energy	<s<sup>2></s<sup>	$<\!\!S^2\!\!>_{cont}$ a
		(kcal mol ⁻¹)		
Fe _(B) -BNNT	doublet	52.1	0.7890	5.20
	quartet	11.2	3.7523	0.06
	sextet	0.00	8.7501	0.00
Fe _(N) –BNNT	doublet	0.00	0.7861	4.81
	quartet	10.1	3.7591	0.24
	sextet	24.0	8.7503	0.00

 $^{\rm a}$ The percent spin contamination ${<\!\rm S^2\!\!>_{cont}} = [{<\!\rm S^2\!\!>} - S(S{+}1)]100/[S(S{+}1)]$

Table S2. Partial natural charges of the adsorption complex (q_{Ads}) and charge-transfer of all species in the adsorption complexes (${}^{\Delta q}Ads$) and transition states (${}^{\Delta q}TS$).^a

System	q _{Ads}			Δq_{Ads}			$\Delta q_{\rm TS}$		
	tube	Fe	N ₂ O	tube	Fe	N ₂ O	tube	Fe	N ₂ O
sextet Fe _(B) -BNNT:N ₂ O	-1.333	1.241	0.091	-0.037	-0.055	0.091	0.548	-0.069	-0.479
doublet Fe _(N) -BNNT:N ₂ O	0.357	-0.039	-0.318	0.442	-0.083	-0.360	0.026	-0.007	-0.019

^a calculated from equations $\Delta q_{Ads} = q_{Ads} - q_{iso and} \Delta q_{TS} = q_{TS} - q_{Ads where} q_{Ads} q_{TS and} q_{iso are charges of all species in the adsorption complexes, the transition states and the isolated N₂O and nanotubes, respectively.$

Fig. S1 Geometrical structures and adsorption energy with ZPE correction of N-bound complexes over (a) sextet $Fe_{(B)}$ -BNNT and (b) doublet $Fe_{(N)}$ -BNNT. Distances and angles are given in Å and degrees, respectively.

Table S3. Relative energies with zero-point energy (ZPE) of N₂O decomposition on Fe_(B)-BNNT and Fe_(N)-BNNT.

	Relative energy (kcal mol ⁻¹)				
	Doublet state	Quartet state	Sextet state		
Fe _(B) -BNNT + N ₂ O	52.1	11.2	0.0		
Ads	5.2	2.1	-12.9		
TS	15.5	9.6	12.3		
Prod	-43.3	-39.2	-14.4		
FeO _(B) -BNNT + N ₂	-40.9	-36.4	-15.4		
$Fe_{(N)}$ -BNNT + N ₂ O	0.0	10.1	24.0		
Ads	-25.0	-3.1	1.9		
TS	-25.2	-19.2	4.8		
Prod	-51.3	-67.3	-32.8		
FeO _(N) -BNNT + N ₂	-48.7	-64.7	-32.5		

PCCP