Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

Supporting Information

A density function theory study on the NO reduction on nitrogen doped graphene

Xilin Zhang,^a Zhansheng Lu,*a Yanan Tang,^b Zhaoming Fu,^a Dongwei Ma,^c and Zongxian Yang*a

^a College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, 453007, China

^bDepartment of Physics and Electronic Science, Zhengzhou Normal University, Zhengzhou, 450044, China

^cSchool of Physics, AnyangNormal University, Anyang 455000, China.

Electronic mails: zslu@henannu.edu.cn (Z Lu); yzx@henannu.edu.cn (Z Yang).

^{*}Author to whom correspondence should be addressed.

Supporting information 1:

Table S1: The vibrational frequencies of the transition states for the main reaction steps.

Reaction step	Vibrational frequencies (cm ⁻¹)
${}$ NO \rightarrow N + O	i514.83, 177.39, 257.18, 264.77, 359.79, 53.41, 745.31, 866.05,
$(NO)_2 \rightarrow N_2O + O_{ads}$	i196.09, 114.14, 146.46, 200.09, 246.53, 415.45, 580.19, 1089.55, 1340.12,
	1903.21, 2383.35, 2425.07
$O_{ads} + NO \rightarrow NO_2$	172.57, 73.80, 114.80, 138.75, 201.33, 233.71, 664.34, 952.20, 1788.35

Supporting information 2:

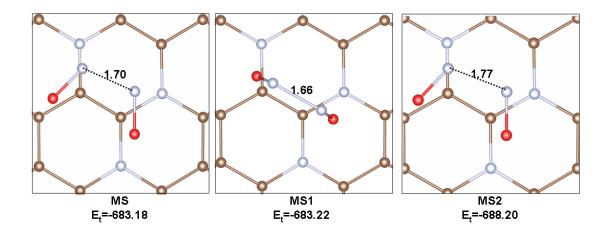


Figure S1: The metastable state structures for the co-adsorption of two NO molecules on the NG support. The E_t represent the total energy of the system and the MS2 represent the structure with the VdW correction.