New insights into the by-product fatigue mechanism of the photo-induced ring-opening in diarylethenes

David Mendive-Tapia,^{*a,b} Aurélie Perrier,^c Michael J. Bearpark,^d Michael A. Robb,^d Benjamin Lasorne,^e and Denis Jacquemin^{*a,f}

Electronic Supplementary Information (ESI)

Contents

1	Ground state optimised structures (Å)	2						
2	Excited state optimised structures (Å)							
	2.1 Model II	4						
	2.2 Model III	6						
	2.3 Model IV	8						
3	Relative CASPT2 energies (kcal/mol)	9						
	3.1 Model II	9						
	3.2 Model III	9						

^a Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS no. 6230, BP 92208, Université de Nantes, 2, Rue de la Houssinière, 44322 Nantes, Cedex 3, France. E-mail: denis.jacquemin@univ-nantes.fr, david.mendive@univ-nantes.fr.

^b Research visitor, Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom.

^c Laboratoire Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS UMR 7086, Université Paris 7 - Paris Diderot, Bâtiment Lavoisier, 15 rue Jean Antoine de Baïf, 75205 Paris Cedex 13, France.

^d Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom.

^e Institut Charles Gerhardt Montpellier, UMR 5253, CNRS-UM2-ENSCM-UM1, CTMM, Université Montpellier 2, CC 1501, Place Eugène Bataillon, 34095 Montpellier, France.

^{*f*} Institut Universitaire de France, 103, blvd Saint-Michel, F-75005 Paris Cedex 05, France.

1 Ground state optimised structures (Å)

(5) $TS_1 S_0(1A)$

2 Excited state optimised structures (Å)

2.1 Model II

(10) $TS_5 S_1(2A)$

(11) ConInt₁ $S_1(2A)/S_0(1A)$

(12) Closed $S_1(2A)$

(13) $TS_4 S_1(2A)$

(14) SeamGeom $S_1(2A)/S_0(1A)$

2.2 Model III

(18) TS₅ S₁(2A)

(19) ConInt₁ $S_1(2A)/S_0(1A)$

2.3 Model IV

3 Relative CASPT2 energies (kcal/mol)

3.1 Model II

Structure	State	CASSCF	Description	CASPT2	Description
CHD	S ₀	0.00	1A	0.00	1A
	S_1	111.99	2A	108.02	2A
	S_2	132.53	1B	119.21	1B
CHD*	S ₀	18.27	1A	18.14	1A
	S_1	84.85	2A	82.50	2A
	S_2	117.67	1B	112.78	1B
TS ₄	S ₀	62.50	1A	61.84	1A
	S_1	131.53	2A	126.84	2A
	S_2	144.34	1B	136.60	1B
ConInt ₂	S ₀	70.14	1A	72.11	1A
	S_1	70.35	2A	72.84	2A
	S_2	119.49	1B	123.53	1B

Table 1Vertical excitation energies calculated at the CASSCF(10,10)/6-31G(d) and
CASPT2//CASSCF(10,10)/6-31G(d) levels of theory.

3.2 Model III

Table 2Vertical excitation energies calculated at the CASSCF(10,10)/6-31G(d) and
CASPT2//CASSCF(10,10)/6-31G(d) levels of theory.

Structure	State	CASSCF	Description	CASPT2	Description
CHD	S ₀	0.00	1A	0.00	1A
	S_1	128.32	2A	101.40	2A
	S_2	133.98	1 B	117.83	1 B
CHD*	S ₀	19.97	1A	15.85	1A
	S_1	79.94	2A	74.02	2A
	S_2	115.33	1B	107.66	1 B
TS ₄	S ₀	39.65	1A	38.59	1A
	S_1	101.75	2A	82.52	2A
	S_2	113.21	1 B	104.65	1B
ConInt ₂	S ₀	75.27	1A	57.20	1B
	S_1	76.27	2A	64.59	1A
	S_2	84.13	1B	64.66	2A