ESI for

Structural aspects of heteropolyacid microemulsions

Mrinal K. Bera,^a Ross J. Ellis,^a Benjamin P. Burton-Pye,^b and Mark R. Antonio^{a,*} ^aChemical Sciences & Engineering Division, Argonne National Laboratory, Argonne, IL 60439 U.S.A. ^bCUNY Hunter College, Department of Chemistry, New York, NY 10065 U.S.A.

Figure S1. Guinier plots of the experimental SAXS data of Figure 3 (article text) showing the linear and effectively parallel responses that indicate that the clusters sizes are the same and independent of charge for H_3PT , H_4SiT , and H_5AIT (green squares, blue triangles, and red circles, respectively) in acidic (pH = 1) aqueous electrolytes.

Figure S2. (a) Log-log plot of the SAXS data, I(q) vs. q, for the light solution phases obtained from the solvent extraction (SX) of H₃PT and H₄SiT (green squares and blue triangles, respectively) with 20% TBP-*n*-octane and 20% TBP-*n*-dodecane solutions, respectively. (b) The corresponding distance distribution functions, p(r) vs. r., obtained from the data of part (a) using the Moore autocorrelation method.¹ These data are consistent with reverse micellar structures without heteropolyacid.

Figure S3. (a) Log-log plot of the SAXS data, I(q) vs. q, for the light solution phases obtained from the dissolution of H₃PT, H₄SiT, and H₅AlT (green squares, blue triangles, and red circles, respectively) in 20% TBP-*n*-dodecane solutions. (b) The corresponding distance distribution functions, p(r) vs. r., obtained from the data of part (a) using the Moore autocorrelation method.¹

Figure S4. (a) Log-log plot of the SAXS data, I(q) vs. q, for the light solution phases obtained from the dissolution of H₃PT, H₄SiT, and H₅AlT (green squares, blue triangles, and red circles, respectively) in 30% TBP-*n*-dodecane solutions. (b) The corresponding distance distribution functions, p(r) vs. r., obtained from the data of part (a) using the Moore autocorrelation method.¹

References

(1) Moore, P. B. J. Appl. Crystallogr. **1980**, *13*, 168-175.