Supporting information

Unravelling the Conformations of di-(perylene bisimide acrylate) by combining Time-Resolved Fluorescence-Anisotropy experiments and Molecular Modelling

F. Spreitler ${ }^{\text {a }}$, M. Sommer ${ }^{\text {d }}$, M. Thelakkat ${ }^{\text {b }}$, S. Gekle ${ }^{c, *}$, J. Köhler ${ }^{\text {a, }}{ }^{*}$

${ }^{\text {a Florian Spreitler, Prof. Dr. Jürgen Köhler, Experimental Physics IV and BIMF, University of }}$ Bayreuth, D-95440 Bayreuth, Germany

Fax: (+49) 921-554002; E-mail: juergen.koehler@uni-bayreuth.de
${ }^{\text {b }}$ Prof. Dr. Mukundan Thelakkat, Applied Functional Polymers, Department of Macromolecular Chemistry I, University of Bayreuth, D-95440 Bayreuth, Germany
${ }^{\text {c Prof. Dr. Stephan Gekle, Physics Department, University of Bayreuth, D-95440 Bayreuth, }}$ Germany
${ }^{d}$ current address: Michael Sommer, Institute for Macromolecular Chemistry, Albert-LudwigsUniversität Freiburg, 79104 Freiburg, Germany

* corresponding author

Contents:

I. Time rescaling in MD simulations
II. Förster-distance for PBI-PBI homo-ET in (PerAcr) ${ }_{2}$
III. Derivation of Eq. 10 of the main text
IV. Calculation of the hopping constant k_{0} and the orientation factor κ in Eq. 11 of the main text

I. Time rescaling in MD simulations

Since the focus of our work is comparing the photophysical properties of monomeric PerAcr with those of dimeric (PerAcr) $)_{2}$ we choose the long-time anisotropy decay of the former as a reference time scale. From simulations on a single monomer we obtain the anisotropy decay depicted in figure SI_1. It features a clear mono-exponential tail with a time constant $\theta_{\text {sim }}=1140$ ps. Comparing with the experimental value $\theta_{\text {exp }}=460$ ps yields a scaling factor of 2.5. All times obtained from MD simulations were divided by this constant factor without any further adjustments.

Fig.SI_1: Anisotropy decay of a single PerAcr monomer (solid line) with a fit to the monoexponential tail (red dashed line).

II. Förster-distance for PBI-PBI homo-ET in (PerAcr) ${ }_{2}$

Förster resonance energy transfer (FRET) refers to the transfer of electronic excitation energy between a donor (D) and an acceptor (A) molecule, that are only weakly coupled. This allows to take advantage of time-dependent perturbation theory and to derive under several further approximations (restriction of the electrostatic interaction to the leading dipole-dipole term) an expression from Fermi's golden rule for the energy transfer rate from D to A. This yields that the rate depends on the $D-A$ distance as R^{-6}, the reciprocal lifetime of the excited state of the unperturbed donor, and further scaling factors that can be lumped together in a constant termed the Förster radius R_{0}, which is given as: ${ }^{1}$

$$
\begin{equation*}
\mathrm{R}_{0}{ }^{6}=\frac{9(\ln 10) \kappa^{2} \mathrm{Q}_{\mathrm{D}}}{128 \pi^{5} \mathrm{Nn}^{4}} \int_{0}^{\infty} \mathrm{F}_{\mathrm{D}}(\lambda) \varepsilon_{\mathrm{A}}(\lambda) \lambda^{4} \mathrm{~d} \lambda \tag{1}
\end{equation*}
$$

Here N denotes Avogadro's constant, n refers to the refractive index of the solvent; F_{D} is the (normalised) fluorescence spectrum of the donor, Q_{D} is the fluorescence quantum yield of the unperturbed donor, ε_{A} denotes the extinction coefficient of the acceptor, and κ^{2} is the orientational factor of the two interacting transition-dipole moments. Under the assumption of dynamic random averaging of the donor/acceptor orientation this yields 2/3. The Förster radius corresponds to that distance between the donor and the acceptor where the probability is 50% for energy transfer from D to A during the lifetime of the donor excited state. Using the fluorescence and absorption spectra reported for PerAcr earlier, ${ }^{2}$ we find a value of $R_{0}=5 \mathrm{~nm}$ for the Förster radius between the two PBIs in (PerAcr) ${ }_{2}$.

III. Derivation of Eq. 9 of the main text

Let $p_{a}\left(t^{\prime}\right)$ denote the probability that the excitation is located on monomer a at time t^{\prime}. With the reaction rate k, its rate of change is given by
$\beta_{a}^{*}\left(t^{\prime}\right)=-p_{a}\left(t^{\prime}\right) k+\left(1-p_{a}\left(t^{\prime}\right)\right) k$ $=-2 p_{a}\left(\mathrm{t}^{\prime}\right) \mathrm{k}+\mathrm{k}$
which can be solved by the ansatz
$p_{a}\left(t^{\prime}\right)=\frac{1}{2}+C_{0} e^{-2 k t^{\prime}}$
where C_{0} is a constant. Assuming that $p_{a}\left(t^{\prime}=0\right)=1$ fixes $C_{0}=\frac{1}{2}$.

Thus, the probability that the excitation is located on monomer a at time Δt, given that it was on a at $t^{\prime}=0$, is

$$
\begin{equation*}
p_{a}(\Delta t)=\frac{1}{2}+\frac{1}{2} e^{-2 k \Delta t} . \tag{4}
\end{equation*}
$$

This is the resting probability used in the main text.

IV. Calculation of the hopping constant k_{0} and the

orientation factor κ in Eq. 10 of the main text

The reaction rate $k(t)$ is given by ${ }^{3}$
$k(t)=\frac{3}{2} \frac{\kappa(t)^{2}}{\tau}\left(\frac{R_{0}}{R}\right)^{6}$.

The fluorescence life time τ for the ISO state has been determined to be $3.7 \mathrm{~ns}{ }^{2}$ and the Förster radius $R_{0}=5 \mathrm{~nm}$ which leads to $k_{0}=6.33 \mathrm{~nm} / \mathrm{ps}$.

The orientation factor $\kappa(t)$ is calculated from ${ }^{3}$
$\kappa(t)=\left(\cos \alpha(t)-3 \cos \theta_{D}(t) \cos \theta_{A}(t)\right)^{2}$
where α is the angle between the two dipole vectors as in Fig. 3 of the main text and $\theta_{\mathrm{D}}\left(\theta_{\mathrm{A}}\right)$ is the angle between the acceptor (donor) dipole with the vector connecting the centres-ofmass of the two monomers.

References

1 S. E. Braslavsky et al., Photochem. Photobiol. Sci. 7, 1444-1448 (2008).
2 F. Spreitler, M. Sommer, M. Thelakkat, J. Köhler, Phys. Chem. Chem. Phys. 14, 7971-7980 (2012).

3 J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, ed. 3, 2006).

