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I. Time rescaling in MD simulations

Since the focus of our work is comparing the photophysical properties of monomeric PerAcr 

with those of dimeric (PerAcr)2 we choose the long-time anisotropy decay of the former as a 

reference time scale. From simulations on a single monomer we obtain the anisotropy decay 

depicted in figure SI_1. It features a clear mono-exponential tail with a time constant 

sim=1140ps. Comparing with the experimental value exp=460ps yields a scaling factor of 

2.5. All times obtained from MD simulations were divided by this constant factor without any 

further adjustments.

Fig.SI_1: Anisotropy decay of a single PerAcr monomer (solid line) with a fit to the mono-
exponential tail (red dashed line).
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II. Förster-distance for PBI-PBI homo-ET in (PerAcr)2

Förster resonance energy transfer (FRET) refers to the transfer of electronic excitation 

energy between a donor (D) and an acceptor (A) molecule, that are only weakly coupled. 

This allows to take advantage of time-dependent perturbation theory and to derive under 

several further approximations (restriction of the electrostatic interaction to the leading 

dipole-dipole term) an expression from Fermi’s golden rule for the energy transfer rate from 

D to A. This yields that the rate depends on the D-A distance as R-6, the reciprocal lifetime of 

the excited state of the unperturbed donor, and further scaling factors that can be lumped 

together in a constant termed the Förster radius R0, which is given as:1
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Here N denotes Avogadro’s constant, n refers to the refractive index of the solvent; FD is the 

(normalised) fluorescence spectrum of the donor, QD is the fluorescence quantum yield of the 

unperturbed donor, εA denotes the extinction coefficient of the acceptor, and 2 is the 

orientational factor of the two interacting transition-dipole moments. Under the assumption of 

dynamic random averaging of the donor/acceptor orientation this yields 2/3. The Förster 

radius corresponds to that distance between the donor and the acceptor where the 

probability is 50% for energy transfer from D to A during the lifetime of the donor excited 

state. Using the fluorescence and absorption spectra reported for PerAcr earlier,2 we find a 

value of R0 = 5 nm for the Förster radius between the two PBIs in (PerAcr)2.
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III. Derivation of Eq. 9 of the main text

Let  denote the probability that the excitation is located on monomer a at time t'. With 
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the reaction rate k, its rate of change is given by
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which can be solved by the ansatz

(3)



pa ( t ) 
1
2
C0e

2k t 

where C0 is a constant. Assuming that  fixes .
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Thus, the probability that the excitation is located on monomer a at time , given that it was 



t

on a at t'=0, is

. (4)
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This is the resting probability used in the main text.
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IV. Calculation of the hopping constant k0 and the 

orientation factor  in Eq. 10 of the main text

The reaction rate k(t) is given by 3

. (5)
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The fluorescence life time  for the ISO state has been determined to be 3.7ns 2 and the 

Förster radius R0 =5nm which leads to k0=6.33 nm6/ps.

The orientation factor (t) is calculated from 3

(6)



(t) cos(t)  3cosD (t)cosA (t) 2

where  is the angle between the two dipole vectors as in Fig. 3 of the main text and D (A) 

is the angle between the acceptor (donor) dipole with the vector connecting the centres-of-

mass of the two monomers.
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