Electronic Supporting Information for the

Barrierless Tautomerization of Criegee Intermediates *via* Acid Catalysis

Manoj Kumar,^{$\dagger, \ddagger}$ *Daryle H. Busch* $,^{<math>\dagger, \ddagger}$ *Bala Subramaniam* $,^{<math>\ddagger, \square}$ *and Ward H. Thompson* $^{<math>\dagger, \ddagger$}</sup></sup></sup>

[†]Department of Chemistry, University of Kansas, Lawrence 66045

[‡]Center for Environmentally Beneficial Catalysis, 1501 Wakarusa Drive, Lawrence, KS 66047

^DDepartment of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045.

Table of Contents

Computational Details

Scheme S1. Structures of the CIs studied in the present study.

Fig. S1 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free-energy profile of the uncatalyzed tautomerization of *syn*-CH₃CHOO.

Fig. S2 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free energy and enthalpy profile of the HCOOH-catalyzed (*left panel*) and water-catalyzed (*right panel*) tautomerization tautomerization of *syn*-CH₃CHOO.

Fig. S3 M06-2X/aug-cc-pVTZ calculated calculated transition states of oxalic acid-

catalyzed (left) and malonic acid-catalyzed (right) tautomerization of syn-CH₃CHOO.

Fig. S4 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free-energy profile of the uncatalyzed tautomerization of *syn*- CH₃CH₂CHOO.

Fig. S5 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free-energy profiles of HCOOH-catalyzed (*left panel*) and water-catalyzed (*right panel*) tautomerization of *syn*-CH₃CH₂CHOO.

Fig. S6 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free-energy profile of the uncatalyzed tautomerization of (CH₃)₂COO.

Fig. S7 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free-energy profiles of HCOOH-catalyzed (*left panel*) and water-catalyzed (*right panel*) tautomerization of (CH₃)₂COO.

Fig. S8 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free-energy profile of the uncatalyzed tautomerization of CI_{isoprene1}.

Fig. S9 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free-energy profiles of HCOOH-catalyzed (*left panel*) and water-catalyzed (*right panel*) tautomerization of CI_{isoprene1}.

Fig. S10 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free-energy profile of the uncatalyzed tautomerization of CI_{isoprene2}.

Fig. S11 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free-energy profiles of HCOOH-catalyzed (*left panel*) and water-catalyzed (*right panel*) tautomerization of CI_{isoprene2}.

Fig. S12 M06-2X/aug-cc-pVTZ//M06-2X/aug-cc-pVDZ calculated free-energy profile of the uncatalyzed tautomerization of CI_{pinene}.

Fig. S13 M06-2X/aug-cc-pVTZ//M06-2X/aug-cc-pVDZ calculated free-energy profiles of HCOOH-catalyzed (*left panel*) and water-catalyzed (*right panel*) tautomerization of CI_{pinene}.

Table S1. DFT/aug-cc-pVTZ calculated free-energy barrier (298.15 K, 1 atm, kcal/mol) for the unimolecular gas-phase decomposition of a *syn*-CH₃CHOO molecule.

Table S2. Y/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated zero-point uncorrected barrier height (kcal/mol) for the unimolecular gas-phase decomposition of a *syn*-CH₃CHOO molecule.

Table S3. CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated energies (kcal/mol) of various species involved in the uncatalyzed and catalyzed gas-phase tautomerization of a *syn*-CH₃CHOO molecule.

Table S4. CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated energies (kcal/mol) of various species involved in the uncatalyzed and catalyzed gas-phase tautomerization of a *syn*-CH₃CH₂CHOO molecule.

Table S5. CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated energies (kcal/mol) of various species involved in the uncatalyzed and catalyzed gas-phase tautomerization of a $(CH_3)_2COO$ molecule.

Table S6. CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated energies (kcal/mol) of various species involved in the uncatalyzed and catalyzed gas-phase tautomerization of a CI_{isoprenel} molecule.

Table S7. CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated energies (kcal/mol) of various species involved in the uncatalyzed and catalyzed gas-phase tautomerization of a CI_{isoprene2} molecule.

Table S8. M06-2X/aug-cc-pVTZ//M06-2X/aug-cc-pVDZ calculated energies (kcal/mol) of various species involved in the uncatalyzed and catalyzed gas-phase tautomerization of a CI_{pinene} molecule.

COMPUTATIONAL DETAILS

Multiple Criegee intermediates were considered to investigate the uncatalyzed, watercatalyzed, and formic acid-catalyzed gas-phase Criegee tautomerization reaction: (1) syn-CH₃CHOO, (2) syn-CH₃CH₂CHOO, (3) (CH₃)₂COO, (4) CI_{isoprene1} and CI_{isoprene2}, and (5) CI_{pinene}. In the first step, the geometries of all stationary points considered in this paper were optimized at the M06-2X/aug-cc-pVTZ level of theory with the exception of the CI_{pinene} case where the aug-cc-pVDZ basis set was used. The stationary points were confirmed to be global minima or transition states by performing frequency calculations on the optimized geometries using the same level of theory. These calculations were also used to estimate the zero-point vibrational energy and the thermal corrections to calculated free energies at 298.15 K. The accuracy of the chosen theoretical method for geometry optimization was verified by calculating the barrier height for the tautomerization of syn-CH₃CHOO, using various DFT functionals as well as wavefunction-based methods including coupled cluster with single and double excitations (CCSD), CCSD(T) that also includes perturbative triple contributions, QCISD, and local pair natural orbital coupled electron pair approximation version 1 (LPNO-CEPA/1).¹ In the second step, single point CCSD(T)/aug-cc-pVTZ energy calculations at the M06-2X/aug-cc-pVTZ optimized geometries were performed to obtain more accurate electronic energies. However, in the case of the uncatalyzed and catalyzed isomerization of the larger pinene Criegee intermediate, single point M06-2X/aug-cc-pVTZ calculations were performed at the M06-2X/aug-cc-pVDZ optimized geometries. To account for entropic effects, all the reaction profiles are reported in terms of Gibbs free energies. All of the quantum chemistry calculations were carried out using the NWChem² program suite except the LPNO/CEPA-1 calculations, which were performed using the $ORCA^3$ code.

References.

¹F. Neese, N. Wennmohs and A. Hansen, *J. Chem. Phys.*, 2009, **130**, 114108.

²M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, K. P. Straatsma, H. J. J. van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, W. A. de Jong, NWChem: *Comput. Phys. Commun.*, 2010, **181**, 1477-1489.

³ORCA V2.8.0, an ab initio, DFT, and semiempirical SCF-MO pack- age developed by F. Neese, Bonn University, Germany; available online from <u>http://www.thch.uni-bonn.de/tc/orca/</u>.

Scheme S1. Structures of the CIs studied in the present study.

Fig. S1 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free-energy profile of the uncatalyzed tautomerization of *syn*-CH₃CHOO (298.15 K, 1 atm, kcal/mol).

Fig. S2 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ-calculated free energy (*thick lines*) and enthalpy (*thin lines*) profiles of HCOOH-catalyzed (*left panel*) and water-catalyzed (*right panel*) tautomerization of *syn*-CH₃CHOO (298.15 K, 1 atm, kcal/mol). The free-energy barrier of an uncatalyzed reaction is also shown (horizontal black line).

Fig. S3 M06-2X/aug-cc-pVTZ calculated calculated transition state structures for oxalic acid-catalyzed (*left*) and malonic acid-catalyzed (*right*) tautomerization of *syn*-CH₃CHOO.

Fig. S4 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free-energy profile of the uncatalyzed tautomerization of *syn*-CH₃CH₂CHOO (298.15 K, 1 atm, kcal/mol).

Fig. S5 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free-energy profiles of HCOOH-catalyzed (*left panel*) and water-catalyzed (*right panel*) tautomerization of *syn*-CH₃CH₂CHOO (298.15 K, 1 atm, kcal/mol). The horizontal black line corresponds to the free-energy barrier of an unassisted reaction.

Fig. S6 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free-energy profile of the uncatalyzed tautomerization of $(CH_3)_2COO$ (298.15 K, 1 atm, kcal/mol).

Fig. S7 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free-energy profiles of HCOOH-catalyzed (*left panel*) and water-catalyzed (*right panel*) tautomerization of (CH₃)₂COO (298.15 K, 1 atm, kcal/mol). The horizontal black line corresponds to the free-energy barrier of an unassisted reaction.

Fig. S8 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free-energy profile of the uncatalyzed tautomerization of $CI_{isoprenel}$ (298.15 K, 1 atm, kcal/mol).

Fig. S9 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free-energy profiles of HCOOH-catalyzed (*left panel*) and water-catalyzed (*right panel*) tautomerization of CI_{isoprenel} (298.15 K, 1 atm, kcal/mol). The horizontal black line corresponds to the free-energy barrier of an unassisted reaction.

Fig. S10 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free-energy profile of the uncatalyzed tautomerization of CI_{isoprene2} (298.15 K, 1 atm, kcal/mol).

Fig. S11 CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated free-energy profiles of HCOOH-catalyzed (*left panel*) and water-catalyzed (*right panel*) tautomerization of CI_{isoprene2} (298.15 K, 1 atm, kcal/mol). The horizontal black line corresponds to the free-energy barrier of an unassisted reaction.

Fig. S12 M06-2X/aug-cc-pVTZ//M06-2X/aug-cc-pVDZ calculated free-energy profile of the uncatalyzed tautomerization of CI_{pinene} (298.15 K, 1 atm, kcal/mol).

Fig. S13 M06-2X/aug-cc-pVTZ//M06-2X/aug-cc-pVDZ calculated free-energy profiles of HCOOH-catalyzed (*left panel*) and water-catalyzed (*right panel*) tautomerization of CI_{pinene} (298.15 K, 1 atm, kcal/mol). The horizontal black line corresponds to the free-energy barrier of an unassisted reaction.

Table S1. DFT/aug-cc-pVTZ calculated free-energy barrier for the unimolecular gasphase decomposition of a *syn*-CH₃CHOO molecule (298.15 K, 1 atm, kcal/mol).

DFT Functional	ΔG [‡]
BP86	13.2
PBE	14.2
MPW1PW91	14.7
TPSSh	15.5
O3LYP	15.8
BLYP	15.8
M05-2X	15.2
M06-2X	15.5
BHandHLYP	19.1

Table S2. Y/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated zero-point uncorrected barrier height (kcal/mol) for the unimolecular gas-phase decomposition of a *syn*-CH₃CHOO molecule (298.15 K, 1 atm, kcal/mol).

Y	ΔE [‡]
BP86	14.8
PBE	15.9
MPW1PW91	16.3
M05-2X	17.0
TPSSh	17.1
O3LYP	17.2
BLYP	17.6
M06-2X	17.6
BHandHLYP	20.8
LPNO/CEPA-1	25.6
QCISD	21.2
CCSD	20.1
CCSD(T)	18.7

Table S3. CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated energies of various species involved in the uncatalyzed and catalyzed gas-phase tautomerization of a *syn*-CH₃CHOO molecule (298.15 K, 1 atm, kcal/mol). All Energies are reported with respect to the separated reactants. Note that the energies for the oxalic acid and malonic acid catalyzed tautomerization are only calculated at the M06-2X/aug-cc-pVTZ level of theory.

Catalyst	Int ₁		TS		Int ₂		Р	
	ΔE	ΔG	ΔE	ΔG	ΔE	ΔG	ΔE	ΔG
No	-	-	16.3	16.7			-17.8	-18.0
Water	-9.5	-1.3	4.8	14.7	-26.1	-17.8	-17.8	-18.0
Formic acid	-20.1	-9.6	-11.8	-0.4	-32.0	-21.7	-17.8	-18.0
Oxalic acid	-19.6	-8.7	-13.1	-1.5	-29.1	-18.6	-17.8	-18.0
Malonic acid	-19.1	-7.6	-12.0	0.1	-28.3	-17.8	-17.8	-18.0

Table S4. CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated energies of various species involved in the uncatalyzed and catalyzed gas-phase tautomerization of a *syn*-CH₃CH₂CHOO molecule (298.15 K, 1 atm, kcal/mol). All Energies are reported with respect to the separated reactants.

Catalyst	Int ₁		TS		Int ₂		Р	
	ΔE	ΔG	ΔE	ΔG	ΔE	ΔG	ΔE	ΔG
No	-	-	16.1	16.4			-19.5	-19.8
Water	-9.5	-1.0	4.6	14.4	-27.7	-19.3	-19.5	-19.8
Formic acid	-21.6	-11.3	-12.7	-1.2	-34.3	-24.2	-19.5	-19.8

Table S5. CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated energies of various species involved in the uncatalyzed and catalyzed gas-phase tautomerization of a (CH₃)₂COO molecule (298.15 K, 1 atm, kcal/mol). All Energies are reported with respect to the separated reactants.

Catalyst	Int ₁		TS		Int ₂		Р	
	ΔE	ΔG	ΔE	ΔG	ΔE	ΔG	ΔE	ΔG
No	-	-	15.7	15.9			-15.5	-15.7
Water	-10.9	-2.4	4.6	14.5	-23.9	-15.3	-15.5	-15.7
Formic acid	-23.1	-12.2	-14.1	-3.4	-30.6	-20.2	-15.5	-15.7

Table S6. CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated energies of various species involved in the uncatalyzed and catalyzed gas-phase tautomerization of a CI_{isoprene1} molecule (298.15 K, 1 atm, kcal/mol). All Energies are reported with respect to the separated reactants.

Catalyst	Int ₁		Int ₁ TS		Int ₂		Р	
	ΔE	ΔG	ΔE	ΔG	ΔE	ΔG	ΔE	ΔG
No	-	-	16.9	17.2			-11.8	-12.2
Water	-9.7	-1.6	6.7	16.6	-20.6	-12.4	-11.8	-12.2
Formic acid	-20.5	-9.7	-11.1	0.2	-27.0	-16.9	-11.8	-12.2

Table S7. CCSD(T)/aug-cc-pVTZ//M06-2X/aug-cc-pVTZ calculated energies of various species involved in the uncatalyzed and catalyzed gas-phase tautomerization of a CI_{isoprene2} molecule (298.15 K, 1 atm, kcal/mol). All Energies are reported with respect to the separated reactants.

Catalyst	Int ₁		TS		Int ₂		Р	
	ΔE	ΔG	ΔE	ΔG	ΔE	ΔG	ΔE	ΔG
No	-	-	16.4	16.9			-13.5	-13.5
Water	-9.4	-0.8	5.5	15.7	-24.5	-15.9	-13.5	-13.5
Formic acid	-20.9	-10.0	-12.3	-0.8	-30.7	-20.3	-13.5	-13.5

Table S8. M06-2X/aug-cc-pVTZ//M06-2X/aug-cc-pVDZ calculated energies of various species involved in the uncatalyzed and catalyzed gas-phase tautomerization of a CI_{pinene} molecule (298.15 K, 1 atm, kcal/mol). All Energies are reported with respect to the separated reactants.

Catalyst	Int ₁		TS		Int ₂		Р	
	ΔE	ΔG	ΔE	ΔG	ΔE	ΔG	ΔE	ΔG
No	-	-	15.2	15.7			-17.5	-17.5
Water	-9.3	-0.7	3.6	13.8	-23.5	-14.5	-17.5	-17.5
Formic acid	-20.1	-9.6	-12.2	-0.2	-27.9	-21.2	-17.5	-17.5