Catalytic Modification in Dehydrogenation Properties of KSiH₃ (Electronic Supplementary Information)

Ankur Jain^{a#}, Takayuki Ichikawa^{a*}, Shotaro Yamaguchi^b, Hiroki Miyaoka^c, and Yoshitsugu Kojima^a

^{*a*}Institute for Advanced Materials Research, Hiroshima University, Higashi-Hiroshima 739-8530, Japan. ^bGraduate school of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan ^cInstitute for Sustainable Sciences and Development, Hiroshima University, Higashi-Hiroshima 739-8530, Japan

Tel & Fax: +81-(0)82-424-5744 E-mail: #ankur.j.ankur@gmail.com (A. Jain); * tichi@hiroshima-u.ac.jp (T. Ichikawa)

Fig. 1 XRD pattern of pristine and milled KSi with / without catalysts. Different phases are indexed by symbols (shown in brackets) as follows: $TiO_2 \# 01-084-1284$ (*); KCl # 00-004-0587 (#); Nb₂O₅ # 00-019-0862 (\$); NbO₂ # 01-071-4836 (^); Si # 01-080-0018 (v).

Fig. 2 XRD pattern of all hydrogenated KSi sample. Different phases are indexed by symbols (shown in brackets) as follows: $TiO_2 \# 01-084-1284$ (*); KCl # 00-004-0587 (#); KH # 00-000-1263 (|); Nb₂O₅ # 00-019-0862 (\$); NbO₂ # 01-071-4836 (^); Si # 01-080-0018 (v).

Fig. 3 XRD pattern of milled KSi samples with Nb₂O₅ by varying the the catalyst amount, milling time and particle size of catalyst. Different phases are indexed by symbols (shown in brackets) as follows: Nb₂O₅ # 00-019-0862 (\$); NbO₂ # 01-071-4836 (^).

Fig. 4 XRD pattern of milled KSi samples with Nb₂O₅ by varying the catalyst amount, milling time and particle size of catalyst after hydrogenation. Different phases are indexed by symbols (shown in brackets) as follows: Nb₂O₅ # 00-019-0862 (\$); NbO₂ # 01-071-4836 (^).

Fig. 5 XRD pattern of 1h milled KSi sample after hydrogenation following two different reaction environment (a) heated upto 100°C with heating rate 10 °C/min after filling 5 MPa hydrogen (b) heating upto 100°C with heating rate 10 °C/min under vacuum then introduce 5 MPa hydrogen instantly.

Fig. 6 (a) DSC curve of hydrogenated 1h milled KSi sample under 0.1 MPa Ar at 1, 2, 5, 10°C/min; (b) Kissinger plots using peak temperatures at different heating rates.

Table 1 Activation Energy corresponding to $\mathrm{KSiH}_3 \to \mathrm{KSi}$ conversion for all the samples

S. No.	Sample	Desorption Activation Energy E _{des} (kJmol ⁻¹)
1 2 3 4 5 6 7 8	KSi after activation cycles 1h milled KSi KSi – 5%TiCl ₃ (1h milled) KSi – 5%TiO ₂ (1h milled) KSi – 5% normal Nb ₂ O ₅ (1h milled) KSi – 1% Mesoporous Nb ₂ O ₅ (1h milled) KSi – 5% Mesoporous Nb ₂ O ₅ (20h milled)	141.88 ± 6.67 130.58 ± 4.57 129.861 ± 8.82 120.93 ± 3.72 118.59 ± 7.32 85.77 ± 3.34 66.99 ± 4.624 63.18 ± 1.91