Supporting Information

Monitoring the reversible photoisomerization of

an azobenzene- functionalized molecular

triazatriangulene platform on Au(111) by IRRAS

Hanne Jacob^a, Sandra Ulrich^b, Ulrich Jung^c, Sonja Kuhn^c, Talina Rusch^c, Christian Schütt^b, Finn Petersen^a, Thomas Strunskus^d, Olaf Magnussen^c, Rainer Herges^{*b} and Felix Tuczek^{*a}

^aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Str.2, 24118 Kiel, Germany

^bInstitut für Organische Chemie, Christian-Albrechts-Universität Kiel, Otto-Hahn-Platz 4 24098 Kiel, Germany

^cInstitut für Experimentelle und Angewandte Physik der Christian-Albrechts-Universität Kiel, Leibnizstraße 11-19, 24118 Kiel, Germany

^dTechnische Fakultät der Christian-Albrechts-Universität Kiel, Kaiserstraße 2, 24143 Kiel,

Germany

Corresponding authors:

RH: Email: rherges@ac.uni-kiel.de

FT: E-Mail: ftuczek@ac.uni-kiel.de, fax: +49 431 880-1523

Table S1. Cartesian coordinates of the optimized structure for methoxy-azo-TATA (propyl side chains) *trans*.

XYZ file

90

Energy = -2008.147853891 Basis = RB3LYP 6-31++G(d,p), Charge O, Singlet

С 3.9673356 1.9951678 -1.1887097 Ν 3.7169768 1.3405710 -2.4086399 С 3.7131519 -0.0668466 -2.4518879 С 3.4349548 -0.7880758 -1.2661601 С 3.0133737 -0.0367514 -0.0061244 C 3.7006529 1.3249226 0.0282536 С 3.9542420 1.9493814 1.2730930 Ν 3.6801526 1.2418173 2.4595123 3.6745915 -0.1646937 2.4406177 С С 3.4197272 -0.8422233 1.2252023 С 3.9953742 -0.7846636 -3.6402232 С 3.9617283 -2.1833473 -3.6308746 С 3.6765189 -2.9030012 -2.4655329 С 3.4198689 -2.2026837 -1.2623749 Ν 3.1501584 -2.8869616 -0.0631139 С 3.4133347 -2.2563100 1.1683781 С 4.4832745 3.3137774 -1.1557025 4.7376452 3.9215787 0.0783031 С С 4.4926374 3.2598209 1.2864429 С 3.9199662 -0.9168163 3.6151050 С 3.9244731 -2.3140732 3.5478931 С 3.6873274 -2.9920968 2.3470260 4.2684892 -0.2632361 -4.5677117 Η Η 4.1851983 -2.7312646 -4.5611776

Η	3.6783410	-4.0006821	-2.4917989
Η	4.7089262	3.8559465	-2.0834539
Η	5.1620113	4.9388512	0.1001290
Η	4.7501611	3.7580256	2.2308774
Η	4.1398821	-2.8960283	4.4591902
Η	3.7457855	-4.0888963	2.3306655
С	1.5395275	0.1368587	-0.0092328
С	0.3142937	0.2581117	-0.0072291
С	-1.1061037	0.3759060	-0.0027081
С	-1.9273026	-0.7891121	-0.0282530
С	-1.7388457	1.6470235	0.0292178
С	-3.3153636	-0.6888109	-0.0212981
С	-3.9392960	0.5843966	0.0117210
С	-3.1313382	1.7446929	0.0362505
N	-5.3314493	0.7955394	0.0225559
N	-6.0377652	-0.2632053	0.0014276
С	-7.4272127	-0.0607840	0.0123860
С	-8.2286471	-1.2221207	-0.0122266
С	-9.6267420	-1.1424768	-0.0046416
С	-10.2486621	0.1253174	0.0286955
С	-9.4498687	1.2991877	0.0540267
С	-8.0638815	1.2095175	0.0460325
Η	-1.4396372	-1.7774700	-0.0536940
Η	-1.1153166	2.5545635	0.0484612
Η	-3.9588734	-1.5813929	-0.0405844
Η	-3.6382875	2.7225928	0.0615738
Η	-7.7172762	-2.1976837	-0.0380395
Н	-10.2215949	-2.0673638	-0.0246384
Η	-9.9651727	2.2727876	0.0800961
Η	-7.4282772	2.1078192	0.0652199

Η	4.1296223	-0.4197847	4.5715869
С	3.4552273	1.9397525	3.7253146
Н	4.2326132	1.6585721	4.4745531
Н	3.5867375	3.0228196	3.5446912
С	2.6509254	-4.2605835	-0.1200996
Н	3.3775654	-4.9245717	-0.6456328
Н	2.5860855	-4.6416637	0.9157392
С	3.5206291	2.1376046	-3.6195277
Н	4.4212792	2.7610896	-3.8322007
Η	3.4253339	1.4415171	-4.4734828
0	-11.5906685	0.3266612	0.0390498
С	-12.4535041	-0.7960901	0.0151910
Η	-12.3122175	-1.4050793	-0.9088674
Η	-12.3043017	-1.4495288	0.9070105
Η	-13.4856422	-0.3915861	0.0295559
С	1.2569513	-4.3769422	-0.7602882
Η	1.2813339	-3.9625341	-1.7919614
Η	0.5544843	-3.7329256	-0.1832331
С	2.2571087	3.0138521	-3.5753674
Η	2.3026013	3.6955753	-2.6974438
Η	1.3792593	2.3502264	-3.4077246
С	2.0742162	3.8279616	-4.8592742
Η	1.1515239	4.4460408	-4.8136401
Η	2.9306810	4.5189419	-5.0313937

Table S2. Raman band positions and assignments for methoxy-azo-TATA (propyl side chains) *trans*. The frequencies are given in wavenumbers (cm⁻¹) obtained from bulk Raman, calculated and SERS spectra. Mode numbers derive from the Gaussian frequency calculation (RB3LYP 6-31++G(d,p)).

Peak #	Mode No.	Calc. freq. uncorrected	Calc. freq. corrected	Calc. Intensity	Bulk freq.	SERS freq.	Assignment
	223	2301.8	2197.1	16040.9	2202	2198	Alkine stretching
30	219	1647.5	1590.6	4248.4	1598	1598	C=C stretching Ph _{top}
35	212	1547.1	1497.5	8318.3	1495	1493	N=N stretching. C-H bending Ph
43	204	1509.1	1462.2	9126.1	-	1485	C-H bending CH ₃ Methoxy
44	201	1505.9	1459.3	9093.8	1453	1452	C-H bending CH ₃ Methoxy
47	188	1456.8	1413.7	3849.1	1418	1417	C=C ring deformation Ph _{top}
	187	1442.3	1400.4	3711.0	1403	1403	C=C ring deformation Ph _{bot}
52	177	1371.9	1335.1	160.8	1363	-	C=C ring deformation, Ph _{top}
	173	1341.3	1306.7	620.6	1311	1312	C=C ring deformation, Ph _{bot}
	166	1322.9	1289.7	477.8	1302	1304	C-H bending Ph _{top}
	164	1305.2	1273.2	110.5	1287	-	C=C ring deformation Ph _{TATA}
	160	1281.2	1251.0	1797.6	1253	1253	C-Alkine stretching
55	154	1262.6	1233.7	17.0	1234	-	C-H twisting. Alkyl _{TATA}
56	153	1219.0	1193.3	4146.1	1188	1190	C-H bending Ph _{top} , Ph _{bot}
61	140	1163.4	1141.8	12937.3	1140	1140	C-H bending Ph _{top} , Ph _{bot}
	137	1125.2	1106.4	242.4	1103	1108	C-H bending Ph _{top} , Ph _{bot}
64	123	1011.4	1000.8	270.3	991	998	C _{tertTATA} -Alkine stretching

Figure S1. IR data of methoxy-azo-TATA. Left: CH-stretching vibration region, right: fingerprint region. The spectra in the top panels show the calculated, the spectra in the middle the bulk and the blue spectra at the bottom the IRRAS data of the surface-adsorbed monolayer. Band numbers correspond to Table S3.

Table S3. Infrared vibrational band assignments for methoxy-azo-TATA (propyl side chains) *trans.* The vibrational frequencies are given in wavenumbers (cm⁻¹) obtained from ATR, calculated and IRRAS. Mode numbers derive from the Gaussian frequency calculation (RB3LYP 6-31++G(d,p)). The orientation of the transition dipole moment (TDM) is given with respect to the surface plane (perpendicular: \bot , parallel: || and neither totally parallel nor totally perpendicular: /). *For broad features the experimental frequency regime is indicated instead of exact wavenumbers

Peak #	Mode No.	Calc. freq. uncorrected	Calc. freq. corrected	Calc. Intensity	Bulk freq./ regime*	IRRAS freq.	TDM	Assignment
	264	3234.2	3061.4	8.0			/	C-H stretching Ph _{TATA} .
	263	3233.8	3061.0	10.8				C-H stretching Ph _{TATA}
	262	3233.5	3060.8	15.5			II	C-H stretching Ph _{TATA}
	261	3229.8	3057.4	19.8			II	C-H stretching Ph _{TATA}
	260	3229.7	3057.2	8.7				C-H stretching Ph _{TATA}
	259	3228.9	3056.5	12.1			T	C-H stretching Ph _{top}
1	258	3228.1	3055.7	10.2	C-H _{arom}	-	/	C-H stretching Ph _{top}
2	257	3227.8	3055.5	13.0	C-H _{arom}	-	II	C-H stretching Ph _{TATA}
	256	3227.1	3054.8	2.2			/	C-H stretching Ph _{bot}
	255	3213.0	3041.8	7.8			/	C-H stretching Ph _{bot}
	254	3205.0	3034.3	3.0			/	C-H stretching Ph _{top}
	253	3202.6	3032.1	8.5			/	C-H stretching Ph _{top}
	252	3200.2	3029.9	6.6			/	C-H stretching Ph _{bot}
	251	3197.7	3027.6	8.6			T	C-H stretching Ph _{bot}
3	250	3186.0	3016.7	13.8	C-H _{arom}	2014	/	C-H stretching Ph _{TATA}
4	249	3185.7	3016.5	16.5	C-H _{arom}	3014	/	C-H stretching Ph _{TATA}
5	248	3185.4	3016.2	17.1	C-H _{arom}	-	/	C-H stretching Ph _{TATA}

6	247	3156.9	2989.7	16.7	$CH_2 v_{as}$	-	=	C-H stretching AlkylTATA
7	246	3156.4	2989.3	25.8	CH ₃ v _{as}	$CH_3 \nu_{as}$	T	C-H stretching CH ₃ -methoxy
8	245	3155.9	2988.8	15.2	$CH_2 v_{as}$	$CH_2 \nu_{as}$	/	C-H stretching Alkyl _{TATA}
9	244	3154.4	2987.4	15.1	$CH_2 v_{as}$	-	=	C-H stretching Alkyl _{TATA}
10	243	3108.8	2945.2	29.6			/	C-H stretching CH ₃ -Alkyl _{TATA}
11	242	3108.4	2944.8	29.2	$CH_3 v_{as}$	$CH_3 v_{as}$	/	C-H stretching CH ₃ -Alkyl _{TATA}
12	241	3108.2	2944.6	29.4			/	C-H stretching CH ₃ -Alkyl _{TATA}
13	240	3104.4	2941.1	32.5			/	C-H stretching Alkyl _{TATA}
14	239	3104.3	2941.0	36.1	$CH_2 v_{as}$	$CH_2 v_{as}$	/	C-H stretching Alkyl _{TATA}
15	238	3104.1	2940.9	36.8			/	C-H stretching Alkyl _{TATA}
16	237	3087.4	2925.4	34.5	$CH_3 v_{as}$	-		C-H stretching CH ₃ -methoxy
	236	3082.1	2920.4	5.0			/	C-H stretching Alkyl _{TATA}
	235	3081.6	2919.9	5.3			/	C-H stretching Alkyl _{TATA}
	234	3081.5	2919.9	6.0			/	C-H stretching Alkyl _{TATA}
17	233	3054.5	2894.8	30.7			/	C-H stretching Alkyl _{TATA}
18	232	3053.5	2893.9	30.8	$CH_2 v_s$	$CH_2 \nu_s$	/	C-H stretching Alkyl _{TATA}
19	231	3051.2	2891.8	36.0			/	C-H stretching Alkyl _{TATA}
20	230	3030.6	2872.7	39.2	$CH_3 v_s$	-		C-H stretching CH ₃ -Alkyl _{TATA}
21	229	3030.3	2872.4	53.3	$CH_3 v_s$	-		C-H stretching CH ₃ -Alkyl _{TATA}
22	228	3030.1	2872.2	68.5	$CH_3 v_s$	-		C-H stretching CH ₃ -Alkyl _{TATA}
23	227	3021.6	2864.3	97.0	$CH_3 v_s$	$CH_3 \nu_s$	/	C-H stretching CH ₃ -methoxy
24	226	3019.4	2862.3	45.5			/	C-H stretching Alkyl _{TATA}
25	225	3017.9	2860.9	46.8	$CH_2 v_s$	$CH_2 \nu_s$	/	C-H stretching Alkyl _{TATA}
26	224	3016.9	2860.0	44.8			/	C-H stretching Alkyl _{TATA}
	223	2301.8	2197.1	28.9			T	Alkine stretching

27	222	1655.5	1598.0	190.7		1606	T	C=C stretching Ph _{top}
28	221	1654.4	1596.9	266.0		-		C=C stretching Ph _{TATA}
29	220	1654.3	1596.9	262.3	~1600	_		C=C stretching Ph _{TATA}
30	219	1647.5	1590.6	203.2		1606	T	C=C stretching Ph _{top}
	218	1638.2	1581.9	17.7			T	C=C stretching Ph _{top}
31	217	1621.1	1566.0	139.0	~1590	-	Ш	C=C stretching Ph _{TATA}
32	216	1620.7	1565.7	140.1	~1585	-		C=C stretching Ph _{TATA}
33	215	1616.9	1562.2	69.9	~1580	1589	L	C=C stretching Ph _{top}
	214	1611.3	1557.0	0.1			/	C=C stretching Ph _{TATA}
34	213	1596.7	1543.4	28.6	~1580	1589	T	C=C stretching Ph _{bot}
35	212	1547.1	1497.5	59.4	~1500	1504	L	N=N stretching. C-H bending Ph.
36	211	1535.9	1487.1	64.0	~1485	-	L	C-H bending Ph _{top.bot}
37	210	1534.7	1485.9	46.9	~1475	-	L	C-H bending Ph _{top} , Ph _{bot}
38	209	1520.2	1472.5	24.8		1468	/	C-H bending Alkyl _{TATA}
39	208	1519.6	1472.0	26.8	~1470	1100	/	C-H bending Alkyl _{TATA}
40	207	1517.6	1470.2	46.0		-		C-H bending Alkyl _{TATA}
41	206	1516.0	1468.6	130.0	~1460	-	/	C-H bending Alkyl _{TATA}
42	205	1515.3	1468.0	106.7		-		C-H bending Alkyl _{TATA}
43	204	1509.1	1462.2	41.5		-	T	C-H bending CH ₃ Methoxy
	203	1507.3	1460.6	2.8				C-H bending Alkyl _{TATA}
	202	1507.3	1460.6	3.6			/	C-H bending Alkyl _{TATA}
44	201	1505.9	1459.3	23.2	~1460	-	T	C-H bending CH ₃ Methoxy
	200	1505.9	1459.2	4.8			/	C-H bending Alkyl _{TATA}
	199	1505.0	1458.4	8.3			/	C-H bending Alkyl _{TATA}
	198	1504.8	1458.3	12.2			/	C-H bending Alkyl _{TATA}

	197	1503.2	1456.8	11.0			/	C-H bending
	177						/	Alkyl _{TATA}
	196	1500.0	1453.8	0.4			/	C-H bending
		1 400 0		0.7				C H bending
	195	1499.9	1453.7	0.7			/	Alkvl
	104	1499.1	1/152 0	0.3			,	C-H bending
	194		1432.7	010			/	Alkyl _{TATA}
	193	1496.9	1451.0	8.5				C-H bending
	175						- 11	CH ₃ Methoxy
45	102	1486.4		79.4				C=C ring
45	192		1441.2		~1450	-	11	Deformation,
					~1450			C=C ring
46	191	1486.1	1440.0	76.8		-	П	deformation,
			1440.9					Ph _{TATA}
		1492.2		15				C=C ring
	190	1462.5	1437.4	1.3			II	deformation,
								Ph _{TATA}
	189	1478.1	1433.6	19.3			T	CH bending.
								C=C ring
47	188	1456.8	1412 7	30.2	~1420	1420	1	deformation.
			1413.7		_	_	_	Ph _{top}
		1442.2		5.0				C=C ring
	187	1442.5	1400.4	5.2			II	deformation,
								Ph _{bot}
48	186	1428.1	1387.1	67.9		-	I	C-H bending
		1427.7	1296.9	68.1	~1390			C-H bending
49	185	1427.7	1380.8	00.1		-		Alkyl _{TATA}
	104	1421.3	1380.8	0.7				C-H bending
	104						11	Alkyl _{TATA}
	183	1418.2	1378.0	5.8			П	CH ₃ bending
		1.417.0		2.5				Alkyl _{TATA}
	182	1417.2	1377.1	2.7			II	Alkyl _{TATA}
	101	1416.4	1276.2	11				CH ₃ bending
	181	1110.1	1370.3	1.1			II	Alkyl _{TATA}
50	180	1402.4	1363.3	115.5		_	П	C-H bending
	100				~1375		11	Alkyl _{TATA}
51	179	1401.4	1362.4	119.8		-		C-H bending
		1270 5		0.2				AlKyl _{TATA}
	178	13/9.5	1342.1	0.3				AlkvlTATA
								C=C ring
52	177	1371.9	1335 1	65.0	~1370	1380	L	deformation,
								Ph _{top}
	176	1361.3	1325.2	1.1				C=C ring
	110							deformation,

								Ph _{TATA}
	175	1361.0	1325.0	1.3				C=C ring deformation, Ph _{TATA}
	174	1345.0	1310.2	0.3				C=C ring deformation, Ph _{TATA}
	173	1341.3	1306.7	4.9			/	C=C ring deformation, Ph _{bot}
53	172	1340.4	1305.8	22.2	~1295	-	=	C-H bending Alkyl _{TATA}
	171	1339.5	1305.0	4.5				C-H bending Alkyl _{TATA}
	170	1338.7	1304.3	16.6				C-H bending Alkyl _{TATA}
	169	1334.4	1300.3	1.3				C-H bending Alkyl _{TATA}
	168	1332.6	1298.7	0.5			=	C-H bending Alkyl _{TATA}
	167	1327.0	1293.5	0.3			/	C-H bending Alkyl _{TATA}
	166	1322.9	1289.7	6.5			T	C-H bending, Ph _{top}
	165	1317.8	1284.9	0.3			I	C-H bending, Ph _{bot}
	164	1305.2	1273.2	10.9				C=C ring deformation, Ph _{TATA}
54	163	1287.9	1257.2	645.3	~1245	1257	L	C-O stretching. C=C Ph _{top.} C-H bending CH ₃ Methoxy
	162	1286.7	1256.1	25.4			I	C-H twisting, Alkyl _{TATA}
	161	1285.8	1255.2	29.6			I	C-H twisting, Alkyl _{TATA}
	160	1281.2	1251.0	86.1			T	C-Alkine stretching
	159	1274.4	1244.7	17.7			I	C-H bending Ph _{TATA}
	158	1273.9	1244.2	12.9				C-H bending Ph _{TATA}
	157	1269.7	1240.3	2.9			/	C-H twisting, Alkyl _{TATA}
	156	1267.4	1238.2	11.0			T	C-N stretching, C-H bending Ph _{top} , Ph _{bot}
	155	1263.0	1234.1	209.2				C-H twisting, Alkyl _{TATA}

55	154	1262.6	1233.8	200.6		-	I	C-H twisting, AlkylTATA
56	153	1219.0	1193.3	1.2	~1240	-	T	C-H bending Ph _{top} , Ph _{bot}
	152	1215.8	1190.4	0.6			/	C-H bending Ph _{TATA}
	151	1215.4	1190.0	1.0			/	C-H bending Ph _{TATA}
	150	1211.3	1186.2	1.0			/	C-H bending Ph _{TATA}
	149	1204.6	1180.0	13.5			/	C-H rocking, CH ₃ Methoxy
57	148	1192.6	1168.8	23.4	~1165	-		C-H bending Ph _{TATA}
	147	1192.2	1168.5	9.7				C-H bending Ph _{TATA}
	146	1192.1	1168.4	32.6				C-H bending Ph _{TATA}
58	145	1174.0	1151.6	175.2	~1160	1144	T	C-H bending, Ph _{top} . Ph _{bot}
	144	1169.5	1147.4	0.8				C-H rocking CH ₃ Methoxy
	143	1167.3	1145.4	10.8				C-H rocking Alkyl _{TATA}
59	142	1166.4	1144.6	70.9	~1150	-	I	C-H rocking Alkyl _{TATA}
60	141	1166.0	1144.2	65.8		-	I	C-H rocking Alkyl _{TATA}
61	140	1163.4	1141.8	57.1	~1140	1144	/	C-H bending Ph _{top} , Ph _{bot}
	139	1133.4	1114.0	0.2			/	ring deformation, Ph _{TATA}
62	138	1129.8	1110.7	18.5	~1100	1105	/	C-H bending Ph _{top} , Ph _{bot}
	137	1125.2	1106.4	4.1			/	C-H bending Ph _{top} , Ph _{bot}
	136	1123.8	1105.1	6.1				ring deformation, Ph _{TATA}
	135	1123.3	1104.6	6.8				ring deformation, Ph _{TATA}
	134	1121.6	1103.0	0.2				C-H rocking Alkyl _{TATA}
	133	1118.8	1100.5	0.0				C-H rocking Alkyl _{TATA}
	132	1118.5	1100.1	0.1				ring deformation, Ph _{TATA}
	131	1094.0	1077.4	4.3			L	N-C stretching Alkyl _{TATA}
63	130	1061.8	1047.6	86.8	~1130	1045	/	O-CH ₃ stretching Methoxy, ring

								deformation
								Ph _{top}
		10/3 2		13				C-H bending,
	129	1043.2	1030.4	1.5			/	Ph _{TATA} ,
								Alkyl _{TATA}
	128	1040.5	1027.9	0.1				C-C stretching
								Alkyl _{TATA}
	127	1039.2	1026.7	0.1				C-C stretching
		10060		0.0				AIKYI _{TATA}
	126	1036.2	1023.8	0.0				Alley
		1026.2		15 4				ring deformation
	125	1026.3	1014.7	15.4			T	Ph.
		1017 4	1006.4	1.8				ring deformation
	124	1017.4	1006.4	1.0			/	Ph _{top}
	100	1011.4	1000.8	33.9	000	000		C _{tertTATA} -Alkine
64	123	101111	1000.8	55.7	~998	998		stretching
	100	993.2	984 1	0.2				C-H twisting
	122		201.1				II	Ph _{bot}
	121	984.0	975.5	0.1				C-H twisting
	121						- 11	Ph _{top}
	120	979.8	971.6	0.4			1	C-H twisting
	120						- 11	Ph _{bot}
	119	965.5	958.3	0.8			/	C-H twisting
	>							Ph _{TATA}
	118	964.5	957.4	0.8			1	C-H twisting
								Ph _{TATA}
	117	962.8	955.8	0.6			T	C-H twisting
		016.0		0.0				C H twisting
	116	916.8	913.2	0.2			/	Ph _{mama}
		060.0	054.1	0.2				C-H twisting
	115	900.9	954.1	0.2			/	
		955 5	040.0	13			<u> </u>	C-H twisting
	114	100.0	747.0	1.5				Ph _{top}

Figure S2. Intensity of the C(phenyl)-O stretch as a function of time and exponential function resulting from the fit of Figure 11 (main paper).