The Structure and Activation of Substrate Water Molecules in Sr²⁺-Substituted Photosystem II.[†]

Ruchira Chatterjee,^{1, 3} Sergey Milikisiyants,¹ Christopher S. Coates,¹ Faisal H. M. Koua,² Jian-

Ren Shen² & K. V. Lakshmi^{1, *}

¹Department of Chemistry and Chemical Biology and

The Baruch '60 Center for Biochemical Solar Energy Research

Rensselaer Polytechnic Institute

Troy, NY 12180

²Photosynthesis Research Center

Graduate School of Natural Science and Technology and Faculty of Science

Okayama University

Okayama 700-8530, Japan

³Present Address: Physical Biosciences Division

Lawrence Berkeley National Laboratory

Berkeley, CA 94720

Supplementary Information

TITLE RUNNING HEAD: Two-Dimensional ${}^1\mathrm{H}$ HYSCORE Spectroscopy of the S_2 State of Photosystem II.

[†]This study is supported by the Photosynthetic Systems Program, Office of Basic Energy Sciences, United States Department of Energy (DE-FG02-07ER15903) (K.V.L.) and by a Grantin-Aid for Specially Promoted Research No. 24000018 from MEXT/JSPS of Japan (J.R.S.).

*Author for Correspondence:
K. V. Lakshmi
Department of Chemistry and Chemical Biology
Rensselaer Polytechnic Institute
Troy, NY 12180
Phone: (518) 276 3271
Fax: (518) 276 4887
Email: lakshk@rpi.edu

Key Words: Photosystem II, solar water oxidation, S_2 state, tetra-nuclear manganese calciumoxo (Mn₄Ca-oxo) cluster, EPR spectroscopy, ESEEM spectroscopy, HYSCORE spectroscopy.

FIGURE CAPTIONS.

Figure 1S. The complete 2D HYSCORE spectrum of the (A) S_1 state and (B) S_2 of the OEC of Sr^{2+} -substituted PSII from *T. vulcanus* in protonated buffer at a magnetic field position of g = 1.95 with a τ delay of 140 ns.

Figure 2S. The skyline projection plot of the 2D HYSCORE spectrum of the S₁ state (red) and S₂ state (blue) of the OEC of Sr²⁺-substituted PSII from *T. vulcanus* in protonated buffer with a τ delay of 140 ns.

Figure 3S. The frequency-squared representation of the 2D ¹H HYSCORE spectrum of the OEC of Sr²⁺-substituted PSII in protonated buffer at a magnetic field position of g = 1.95 with a τ delay of 140 ns.

Figure 4S. The 2D ¹H HYSCORE difference spectrum of Ca²⁺-containing and Sr²⁺-substituted PSII from *T.vulcanus* in protonated buffer at a magnetic field position of g = 1.95 with a τ delay of 140 ns.

Figure 5S. The frequency-squared representation of the 2D ¹H HYSCORE difference spectrum of Ca²⁺-containing and Sr²⁺-substituted PSII from *T.vulcanus* in protonated buffer at a magnetic field position of g = 1.95 with a τ delay of 140 ns. The dotted lines represent the diagonal and the least square linear fit of the proton hyperfine ridges W^I and W^{II}.

Figure 1S.

Figure 2S.

Figure 3S.

Figure 4S.

