Supplementary Information

Insights into autonomously formed oxygen-evacuated Cu₂O electrode for the selective production of C₂H₄ from CO₂

Dahee Kim,^{*a*††} Seunghwa Lee,^{*a*††} Joey D. Ocon, ^{*a*} Beomgyun Jeong, ^{*a*,*b*} Jae Kwang Lee,^{*b*} Jaeyoung Lee

^aSchool of Environmental Science and Engineering, ^bErtl Center for Electrochemistry and Catalysis RISE, Gwangju Institute of Science and Technology, Gwangju, 500-712 South Korea,

Figure S1. Schematic diagram of the H-type cell used for the electrochemical CO₂ reduction.

Figure S2. Faradaic efficiencies for all products; H_2 (\diamondsuit), CO (\blacktriangle), HCOO⁻ (\bigtriangledown), CH₄ (\blacksquare), and C₂H₄ (\bullet) on (a) Cu₂O and (b) Cu at different applied potentials. CO₂ electrolysis was performed for 30 min at each potential in a CO₂-saturated 0.5 M KHCO₃ solution.

Figure S3. Current density profiles of (a) Cu_2O and (b) Cu during CO_2 electrolysis for 2 h.

Figure S4. Partial current densities during CO₂ electrolysis of (a) Cu₂O and (b) Cu for 2 h. H₂ (\diamondsuit), CO (\blacktriangle), HCOO⁻ (\bigtriangledown), CH₄ (\blacksquare), and C₂H₄ (\bullet).

Cu	0.36	1
Cu ₂ O	0.87	2.42

Figure S5. Cyclic voltammograms (CVs) for the measurement of the surface roughness factor on Cu₂O (a) and Cu (b) electrodes in 0.1 M HClO₄ at a scan rate of 40 mV s⁻¹, with Ar bubbling.

Figure S6. Potential profile during CO₂ electrolysis on Cu electrode at a constant current density of 10 mA cm⁻² for 1 h. Faradaic efficiencies of C_2H_4 (a), CH_4 (b) and H_2 (c) were almost same as the product distribution on Cu electrode at constant potential of -1.9 V.

Figure S7. SEM images for the Cu electrode (a) before and (b) after CO₂ electrolysis and the Cu₂O electrode (c) before and (d) after CO₂ electrolysis at -1.9 vs. Ag/AgCl.

Figure S8. TEM images for the Cu electrode (a) before and (b) after CO_2 electrolysis and the Cu₂O electrode (c) before and (d) after CO_2 electrolysis at -1.9 vs. Ag/AgCl.

Figure S9. Auger spectra of Cu_2O before (a) and after (b) CO_2 electrolysis and Cu before (c) and after (d) CO_2 electrolysis. CO_2 reduction was carried out for 2 h.