# **Supporting Information:**

## Assessment of light-harvesting capability of conjugated polymers

Svante Hedström,<sup>†</sup> Patrik Henriksson,<sup>‡</sup> Ergang Wang,<sup>‡</sup> Mats R. Andersson,<sup>‡</sup> and Petter Persson\*<sup>†</sup>

<sup>†</sup>Division of Theoretical Chemistry, Lund University. P.O.B 124, S-221 00 Lund, Sweden.

<sup>‡</sup>Department of Chemical and Biological Engineering/Polymer Technology, Chalmers University of Technology, S-412 96 Göteborg, Sweden

## **Optimized monomers**



Figure S1. Calculated minimum energy conformation of monomers, optimized with PBE0/6-31G(d,p).

## Square wave voltammetry measurements



Figure S2. SWV measurement plots vs. Ferrocene/Ferrocenium<sup>+</sup> of all polymers in the study.

#### Absorption strength and energies

|                                       | BDT-T-TP-T | EWC4 | APFOG9 | TQ1  | BDT-Q | APFO3 | BDT-BTz | APFO15 | EWC3 |
|---------------------------------------|------------|------|--------|------|-------|-------|---------|--------|------|
| E <sub>abs.exp</sub> /eV              | 1.77       | 1.78 | 1.78   | 2.04 | 2.16  | 2.24  | 2.32    | 2.33   | 2.33 |
| E <sub>abs.calc</sub> /eV             | 1.40       | 1.41 | 1.46   | 1.91 | 1.81  | 1.92  | 1.97    | 1.95   | 2.02 |
| F <sub>M.exp</sub> /kg <sup>-1</sup>  | 0.45       | 0.38 | 0.48   | 0.60 | 0.37  | 1.18  | 1.06    | 0.73   | 0.61 |
| F <sub>M cale</sub> /kg <sup>-1</sup> | 1.00       | 0.71 | 0.68   | 0.87 | 0.62  | 1 96  | 1 86    | 0.90   | 0.90 |

**Table S1.** Energy of maximum absorption and absorption strength per weight for all polymers.

 Experimental and as calculated, extrapolated to experimental molecular weights.

## Size dependence of oscillator strength per weight, $F_{\rm M}$

The oscillator strength or f-value, increases linearly with number of units n, according to Equation 3 for all polymers.<sup>1</sup>

$$\sum_{1 \text{st peak}} f = an + b \rightarrow \frac{\sum_{1 \text{st peak}} f}{n} \equiv F_n = a + \frac{b}{n}$$
(3)

Equation 3, where *a* and *b* are polymer-specific constants, shows that the first peak absorption strength per repeating unit is linear when plotted against 1/n. By further dividing by the molecular mass of the repeating unit ( $M_{rep}$ ), we obtain Equation 4, where  $a_2$  and  $b_2$  are new polymer-specific constants and the total molecular mass M= $M_{rep}$ ×n. Thus  $F_M$  is linear when plotted vs 1/n.

$$\frac{\sum_{1st \; peak} f}{M} \equiv F_M = \frac{a}{M_{rep}} + \frac{b}{M_{rep} \times n} = a_2 + b_2 \times \frac{1}{n}$$
(4)

The  $F_M$  values depend on the number of repeating units, but they converge for longer polymers as 1/n. For TQ1, experimental absorption measurements have been done for five different batches with different molecular weights, and the resulting oscillator strengths per weight is plotted in Figure S3A. They are there compared to calculated ones, obtained through the extrapolation from Figure 6 to the corresponding experimental M, with the added empirical correction. The experimental results show a linear behavior just like the calculations, but exhibit a much slower convergence. The main reason for this is assigned to the experimental overestimation of molecular weights. By dividing the SEC estimated molecular weights by 2, the experimental slope in Figure S3B is in better agreement with calculations. It is possible that the  $F_M$ -values for the other polymers investigated in this study are not fully converged due to their limited molecular weights as reported in Table 1.



**Figure S3.** A: TQ1 experimental and calculated convergence of absorption strength per weight *vs.* inverse number of repeating units. Calculated values are obtained from the linear extrapolation in Figure 6 and experimental according to Equation 5. The linear fit equations reveal a considerably slower convergence for the experimental results, explained by the SEC overestimation of molecular weights. B: as A but with the SEC molecular weight estimations halved. The slopes are now similar for calculation and experiment.

### Synthesis of BDT-BTz



Figure S4. Synthesis steps of BDT-BTz.

Monomer 1 was purchased from Solarmer Materials Inc. and used as received. Monomer 2, was synthesized according to literature.<sup>2</sup> Monomer 1 (0.79 g, 1.03 mmol), monomer 2 (0.4 g, 1.03 mmol),  $Pd_2(dba)_3$  (38 mg) and  $P(o-Tol)_3$  (100 mg) were added to a dry 50 mL flask and dissolved in degassed

toluene (20 mL). The reaction mixture was stirred vigorously whilst refluxed for 5 h. The polymer was precipitated in stirring methanol and collected via filtration through 0.45  $\mu$ m Teflon filter and washed twice with methanol. The polymer was then dissolved in chloroform (300 mL) and stirred at 60 °C overnight with a solution of sodium diethyldithiocarbamate trihydrate (10 wt%, 100 mL). The organic phase was extracted and washed twice with deionized water, concentrated via rotary evaporation and precipitated in methanol. The polymer was recovered via filtration through 0.45  $\mu$ m Teflon filter and purified by Soxhlet extraction with in the following order; methanol, acetone, hexane and chloroform. The chloroform fraction was concentrated via rotary evaporation and poured into methanol and the polymer was collected after filtration through 0.45  $\mu$ m Teflon filter and dried in vacuum oven (40 °C) overnight (549 mg, 75%).

#### Synthesis of BDT-Q



#### Figure S5. Synthesis steps of BDT-Q.

Monomer 1, 5,8-dibromo-2,3-bis(3-(octyloxy)phenyl)quinoxaline was purchased from Solarmer Materials Inc. and used as received. Synthesis of monomer 2, 2.2'-(4,8-bis(5-octylthiophene-2-yl)benzo[1,2-b:4,5b']dithiophene-2,6-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) is described in the synthesis procedure for BDT-T-TP-T. Monomer 1 (377 mg, 0.54 mmol), monomer 2 (450 mg, 0.54 mmol), Pd<sub>2</sub>(dba)<sub>3</sub> (20 mg) and P(o-Tol)<sub>3</sub> (53 mg) were added to a dry 50 mL flask and dissolved in dry THF (20 mL). The reaction was brought to reflux and after 15 minutes tetraethylammonium hydroxide solution (20 wt% in water (3 mL, 4.05 mmol) was added and the reaction was allowed to run for an additional 48 h. The polymer was poured into methanol and recovered by filtration through a 0.45 µm Teflon filter and washed twice with methanol. The polymer was dissolved in chloroform (200 mL) and stirred vigorously with a solution of sodium diethyldithiocarbamate trihydrate in deionized water (10 wt%, 100 mL) at 60 °C overnight. The organic phase was washed three times with water and concentrated by rotary evaporation. It was then precipitated in methanol and collected by filtration through a 0.45 µm Teflon filter. The polymer was further purified by Soxhlet extraction with the following solvents in the given order; methanol, acetone, hexane and chloroform. The chloroform fraction was concentrated by rotary evaporation and poured into methanol. The polymer was finally recovered by filtration through a 0.45 µm Teflon filter and dried in a vacuum oven (40 °C) overnight (440 mg, 73%).

#### Synthesis of BDT-T-TP-T



Figure S6. Synthesis steps of BDT-T-TP-T.

Compound 1, 4,8-Dihydrobenzo[1,2-b:4,5-b']dithiophene-4,8-dione was synthesized according to literature.<sup>3</sup>

To a dry 500 mL flask, 2-octyl thiophene (11 g, 56.3 mmol) was added and dissolved in dry THF (100 mL) and put in an ice bath. N-Butyllithium (25 mL, 60 mmol) was added drop wise to the reaction mixture and then the temperature was increased to 50 °C and stirred for 2 h. Compound **1** (3.1 g, 14 mmol) was dissolved in dry THF (70 mL) and added to the reaction mixture which was allowed to stir for 1 h. The temperature was lowered to ambient and SnCl<sub>2</sub> (21.3 g, 112.6 mmol) dissolved in 10% HCl was added and the mixture was stirred vigorously for 1.5 h and then poured over stirring water ice. The organic phase was extracted three times with diethyl ether and concentrated via rotary evaporation. The resulting compound was purified via column chromatography with petroleum ether and a final step of recrystallization from petroleum ether yielded compound **3**, 4,8-bis(5-octylthiophene-2-yl)benzo[1,2-b:4,5-b']dithiophene (3.83 g, 47%) as yellow crystals.

Compound **3**, 4,8-bis(5-octylthiophene-2-yl)benzo[1,2-b:4,5-b']dithiophene (2 g, 3.46 mmol) was added to a dry 50 mL flask and dry THF (40 mL) was added and the temperature was increased to 50 °C, then N-Butyllithium (2.9 mL, 7.23 mmol) was added drop wise and the reaction mixture was stirred vigorously for 2 h. The temperature was the lowered to ambient and 2-Isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.48 mg, 7.96 mmol) was added and the reaction was stirred for 1 h. The reaction mixture was then poured into 200 mL of cool deionized water and extracted by ether three times. The organic layer was washed by water two times and then dried by anhydrous MgSO4. After removing the solvent under vacuum, the residue was purified via column chromatography with petroleum ether/ethyl acetate (9:1) and yielded Compound **4**, 2,2'-(4,8-bis(5-octylthiophene-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2.6 g, 90%).

Compound **5**, 2,3-bis(3-(hexyloxy)phenyl)-5,7-bis(5-methylthiophene-2-yl)thieno[3,4-b]pyrazine was synthesized according to literature.<sup>4</sup>

In a 25 mL dry flask, compound 4 (215 mg, 0.26 mmol), compound 5 (195 mg, 0.26 mmol),  $Pd_2(dba)_3$  (26 mg) and  $P(o-Tol)_3$  (10 mg) were dissolved in degassed toluene (12 mL). The reaction mixture was heated to reflux. After 30 min, tetraethylammonium hydroxide solution (20 wt% in water (3 mL, 4.05 mmol) was added and the reaction was allowed to run for 48 h. The polymer was precipitated into stirring methanol

and collected by filtration through 0.45  $\mu$ m Teflon filter. The polymer was washed twice with methanol and then dissolved in chloroform (200 mL) and stirred gently together with a solution of sodium diethyldithiocarbamate trihydrate (5 wt%, 200 mL) overnight at 60 °C. The organic phase was separated and washed three times with deionized water, concentrated via rotary evaporation and poured into methanol. The polymer was then recovered by filtration through 0.45  $\mu$ m Teflon filter and further purified via Soxhlet extraction with in the following order; methanol, acetone, hexane and chloroform. The chloroform fraction was concentrated via rotary evaporation and poured into methanol and the polymer was collected after filtration through 0.45  $\mu$ m Teflon filter and dried in vacuum oven (40 °C) overnight (124 mg, 38%).

#### Synthesis of EWC4



Figure S7. Synthesis steps of EWC4.

The monomer **1**, 9-(heptadecan-9-yl)-2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole, and **2**, 5,10-bis(5-bromothiophene-2-yl)-2,3,7,8-tetraphenylpyrazino[2,3-*g*]quinoxaline, were synthesized according to literature.<sup>5,6,7</sup>

In a 25 mL dry flask, monomer **1** (183 mg, 0.28 mmol), monomer **2** (225 mg, 0.28 mmol), Aliquat 336 (50 mg), tris(dibenzylideneacetone)dipalladium(0) (Pd<sub>2</sub>(dba)<sub>3</sub>) (8 mg), tri(*o*-tolyl)phosphine (P(*o*-Tol)<sub>3</sub>) (16 mg) and K<sub>3</sub>PO<sub>4</sub> (280 mg) were dissolved in a mixture of degassed toluene (5 mL) and deionized water (0.6 mL). The mixture was vigorously stirred at 100 °C for 4 h under nitrogen. The polymer was end-capped by adding 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (204 mg), and after 2 h, bromobenzene (0.3 mL). The mixture was stirred for another 2 h, cooled down and was poured into acetone. The polymer was collected by filtration through 0.45  $\mu$ m Teflon filter. It was then dissolved in ODCB (100 mL) and mixed with a solution of sodium diethyldithiocarbamate trihydrate (5 g) in deionized water (100 mL). The mixture was stirred at 80 °C overnight under nitrogen. The organic phase was separated and washed three times with water. Then it was poured into acetone (400 mL). The precipitate was collected and was Soxhlet-extracted in order with diethyl ether, dichloromethane and then with chloroform. The chloroform solution was concentrated to a small volume and the polymer was precipitated by pouring this solution into acetone. Finally, the polymer was collected by filtration using a 0.45  $\mu$ m Teflon filter and dried under vacuum at 40 °C overnight (190 mg, 63%).

#### Excitations, oscillator strengths and wavelengths

Table S2. Calculated wavelengths  $\lambda$  and oscillator strengths f for the relevant excitations in APFO-3.

| Monor  | mer    | Dimer  |        | Trimer |        | Pentamer |        |
|--------|--------|--------|--------|--------|--------|----------|--------|
| λ [nm] | f      | λ [nm] | f      | λ [nm] | f      | λ [nm]   | f      |
| 536.99 | 0.6468 | 590.24 | 1.8103 | 610.87 | 2.8247 | 625.45   | 4.011  |
| 395.42 | 0.0148 | 544.26 | 0.1964 | 572.88 | 0.3732 | 602.06   | 1.6505 |
| 360.97 | 1.0599 | 490.05 | 0.0547 | 545.09 | 0.2696 | 579.78   | 0.3925 |
| 323.4  | 0.0111 | 475.75 | 0.0291 |        |        |          |        |
| 317.17 | 0.0051 | 421.82 | 0.0147 |        |        |          |        |
| 316.72 | 0.0032 | 403.09 | 0.0722 |        |        |          |        |
| 303.96 | 0.0012 | 397.25 | 1.6342 |        |        |          |        |
| 300.38 | 0.1013 | 367.88 | 0.1388 |        |        |          |        |
| 295.85 | 0.0064 | 363.75 | 0.085  |        |        |          |        |
| 286.52 | 0.0949 | 358.52 | 0.0023 |        |        |          |        |
| 283.67 | 0.0373 | 352.37 | 0.1987 |        |        |          |        |
| 279.72 | 0.0065 | 329.37 | 0.0078 |        |        |          |        |
| 269.72 | 0      | 324.3  | 0.0434 |        |        |          |        |
| 265.4  | 0.0046 | 321.73 | 0.0042 |        |        |          |        |
| 261.16 | 0.0223 | 320.16 | 0.1221 |        |        |          |        |
|        |        | 319.32 | 0.0014 |        |        |          |        |
|        |        | 317.82 | 0.0152 |        |        |          |        |
|        |        | 317.64 | 0.0127 |        |        |          |        |
|        |        | 316.03 | 0.0093 |        |        |          |        |
|        |        | 308.43 | 0.0972 |        |        |          |        |

| Table S2 | . Calculated | wavelengths 2 | λ and oscillator | strengths f for | r the relevant | excitations | in APFO-15. |
|----------|--------------|---------------|------------------|-----------------|----------------|-------------|-------------|
|          |              |               |                  | <u> </u>        |                |             |             |

| Monomer |        | Dimer  |        | Trim   | er     | Tetramer |        |  |
|---------|--------|--------|--------|--------|--------|----------|--------|--|
| λ [nm]  | f      | λ [nm] | f      | λ [nm] | f      | λ [nm]   | f      |  |
| 515.05  | 0.5328 | 575.06 | 1.2721 | 597.42 | 1.4439 | 604.34   | 1.2819 |  |
| 386.7   | 0.0335 | 535.24 | 0.2808 | 556.51 | 1.0573 | 575.61   | 1.8294 |  |
| 377.09  | 0.0271 | 478.36 | 0.0567 | 539.49 | 0.081  | 551.28   | 0.2886 |  |
| 370.23  | 0.0772 | 465.63 | 0.0261 |        |        | 537.61   | 0.2345 |  |
| 367.01  | 0.1386 | 414.71 | 0.0057 |        |        | 512.4    | 0.0136 |  |
| 361.54  | 0.1945 | 401.34 | 0.5889 |        |        | 503.88   | 0.0029 |  |
| 351.61  | 0.6001 | 398.23 | 0.3191 |        |        | 491.23   | 0.024  |  |
| 325.93  | 0.104  | 387.85 | 0.1534 |        |        | 489.48   | 0.0149 |  |
| 313.58  | 0.0092 | 381.46 | 0.0609 |        |        | 487.85   | 0.0581 |  |
| 311.71  | 0.0379 | 375.12 | 0.1636 |        |        | 478.16   | 0.0023 |  |
| 311.23  | 0.005  | 369.03 | 0.2232 |        |        | 468.28   | 0.0119 |  |
| 299.74  | 0.0328 | 368.57 | 0.0089 |        |        | 464.91   | 0.0176 |  |
| 295.6   | 0.0082 | 368.14 | 0.1501 |        |        | 458.95   | 0.0095 |  |
| 293.13  | 0.1173 | 365.67 | 0.0044 |        |        | 448.65   | 0.0087 |  |
| 288.92  | 0.0262 | 362.09 | 0.0062 |        |        | 440.5    | 0.0059 |  |
| 288.32  | 0.2109 | 359.01 | 0.3631 |        |        | 433.96   | 0.0007 |  |
| 286.93  | 0.0032 | 353.21 | 0.0896 |        |        | 424.74   | 0.0002 |  |
| 283.27  | 0.0448 | 350.21 | 0.0317 |        |        | 416.88   | 0.0012 |  |
|         |        | 347.15 | 0.0013 |        |        | 410.43   | 0.0991 |  |
|         |        | 339.7  | 0.0433 |        |        | 409.51   | 0.9036 |  |

| 336.8  | 0.022  | 403.09 | 0.9538 |
|--------|--------|--------|--------|
| 330.77 | 0.0466 | 401.45 | 0.1089 |
| 329.84 | 0.0179 | 399.85 | 0.1538 |
| 329.32 | 0.0015 | 392.14 | 0.0019 |
| 327.06 | 0.0021 | 390.59 | 0.2965 |
| 324.9  | 0.0177 |        |        |
| 323.66 | 0.0553 |        |        |
| 322.81 | 0.0222 |        |        |
| 320.97 | 0.08   |        |        |
| 318.02 | 0.0034 |        |        |
| 316.65 | 0.0072 |        |        |
| 315.26 | 0.0391 |        |        |
| 313.47 | 0.0516 |        |        |
| 312.99 | 0.0171 |        |        |
| 311.9  | 0.0186 |        |        |
| 310.27 | 0.0985 |        |        |
| 304.57 | 0.0014 |        |        |
| 303.1  | 0.1194 |        |        |
| 301.19 | 0.0077 |        |        |
| 300.69 | 0.0095 |        |        |
| 299.62 | 0.0288 |        |        |
| 298.93 | 0.1061 |        |        |
| 296.28 | 0.0087 |        |        |
| 292.31 | 0.0024 |        |        |
| 291.83 | 0.0079 |        |        |

Table S3. Calculated wavelengths  $\lambda$  and oscillator strengths f for the relevant excitations in APFO-G9.

| Mono   | mer    | Dimer  |        | Trimer |        | Tetramer |        |
|--------|--------|--------|--------|--------|--------|----------|--------|
| λ [nm] | f      | λ [nm] | f      | λ [nm] | f      | λ [nm]   | f      |
| 702.66 | 0.3395 | 773.02 | 0.8694 | 804.71 | 1.3152 | 808.11   | 1.6804 |
| 487.67 | 0.0125 | 716.98 | 0.1753 | 754.75 | 0.3042 | 774      | 0.4719 |
| 438.32 | 0.0165 | 626.15 | 0.0232 | 722.65 | 0.1919 | 745.33   | 0.2592 |
| 437.74 | 0.0703 |        |        | 661.36 | 0.0224 | 720.8    | 0.1621 |
| 416.58 | 0.0014 |        |        | 650.57 | 0.0184 | 668.71   | 0.0101 |
| 398.26 | 0.5174 |        |        | 637.66 | 0.0127 | 660.22   | 0.0185 |
| 394.48 | 0.037  |        |        | 611.38 | 0.0119 |          |        |
| 389.6  | 0.0176 |        |        | 587.44 | 0.0019 |          |        |
| 381.52 | 0.2546 |        |        | 580.26 | 0.0012 |          |        |
| 375.6  | 0.8431 |        |        | 532.7  | 0.0041 |          |        |
| 369.37 | 0.0772 |        |        | 522.14 | 0.0036 |          |        |
| 343.55 | 0.0047 |        |        | 498.1  | 0.0154 |          |        |
| 339.41 | 0.0159 |        |        | 465.59 | 0.0047 |          |        |
| 335.96 | 0.0226 |        |        | 458.96 | 0.0259 |          |        |
| 333.82 | 0.0125 |        |        | 454.56 | 0.0018 |          |        |
| 333.11 | 0.1264 |        |        | 446.69 | 0.0299 |          |        |
| 329.22 | 0.0235 |        |        | 445.28 | 0.0347 |          |        |

| 322.97 | 0.0058 | 440.04 | 0.0858 |
|--------|--------|--------|--------|
| 322.32 | 0.0071 | 438.42 | 0.0041 |
| 320.38 | 0.0988 | 437.71 | 0.002  |
| 312.22 | 0.0046 | 437.42 | 0.0029 |
| 303.09 | 0.0513 | 427.98 | 0.1352 |
| 301.8  | 0.0033 | 424.12 | 0.3546 |
| 300.76 | 0.0074 |        |        |
| 297.99 | 0.0075 |        |        |
| 293.3  | 0.1495 |        |        |
| 291.15 | 0.1082 |        |        |
| 288.82 | 0.1491 |        |        |
| 288.36 | 0.0093 |        |        |
| 286.97 | 0.0079 |        |        |
| 286.01 | 0.0006 |        |        |
| 282.96 | 0.0696 |        |        |
| 281.32 | 0.0484 |        |        |
| 279.72 | 0.0168 |        |        |
| 276.89 | 0.0278 |        |        |

Table S4. Calculated wavelengths  $\lambda$  and oscillator strengths f for the relevant excitations in EWC3.

| Monomer |        | Dimer  |        | Trim   | er     | Tetramer |        |  |
|---------|--------|--------|--------|--------|--------|----------|--------|--|
| λ [nm]  | f      | λ [nm] | f      | λ [nm] | f      | λ [nm]   | f      |  |
| 515.55  | 0.497  | 565.38 | 1.203  | 582.56 | 1.7836 | 591.03   | 2.2547 |  |
| 421     | 0.003  | 526.74 | 0.2658 | 552.45 | 0.4309 | 566.7    | 0.5201 |  |
| 388     | 0.0257 | 470.88 | 0.0359 | 527.99 | 0.3058 | 548.3    | 0.508  |  |
| 378.13  | 0.0126 | 461.01 | 0.0306 |        |        | 527.49   | 0.2751 |  |
| 366.39  | 0.0371 | 425.78 | 0.0027 |        |        | 502.35   | 0.0066 |  |
| 365.05  | 0.1186 | 422.33 | 0.0041 |        |        | 495.43   | 0.0115 |  |
| 358.38  | 0.1733 | 412.82 | 0.0082 |        |        | 486.25   | 0.0139 |  |
| 349.82  | 0.7374 | 409.72 | 0.003  |        |        | 481.11   | 0.0288 |  |
| 325.28  | 0.0798 | 396.97 | 0.0666 |        |        | 479.7    | 0.0329 |  |
| 324.22  | 0.0194 | 393.29 | 0.2546 |        |        | 471      | 0.0088 |  |
| 312.16  | 0.0306 | 388.16 | 0.7849 |        |        | 461.15   | 0.0152 |  |
| 311.62  | 0.0011 | 387.91 | 0.0533 |        |        | 459.99   | 0.0101 |  |
| 311.12  | 0.0024 | 380.29 | 0.0513 |        |        | 452.7    | 0.0123 |  |
| 310.59  | 0.0218 | 370.34 | 0.2258 |        |        | 443.41   | 0.0051 |  |
| 298.81  | 0.0334 | 368.09 | 0.106  |        |        | 434.96   | 0.0037 |  |
| 295.28  | 0.1187 | 367.48 | 0.0354 |        |        | 431.1    | 0.0023 |  |
| 289.3   | 0.0605 | 366.7  | 0.0935 |        |        | 426.01   | 0.0038 |  |
| 287.51  | 0.181  | 362.48 | 0.0218 |        |        | 425.73   | 0.0038 |  |
| 284.2   | 0.0105 | 361.26 | 0.0288 |        |        | 423.99   | 0.0048 |  |
| 281.03  | 0.047  | 356.71 | 0.2591 |        |        | 423.62   | 0.003  |  |
| 278.78  | 0.0116 | 351.23 | 0.1784 |        |        | 420.38   | 0.0047 |  |
| 277.72  | 0.007  | 348.26 | 0.0116 |        |        | 414.12   | 0.0031 |  |
| 273.73  | 0.0007 | 344.95 | 0.0611 |        |        | 413.74   | 0.0046 |  |
| 269.24  | 0.0177 | 339.67 | 0.0152 |        |        | 411.93   | 0.0047 |  |

| 267.71 | 0.0084 | 337.05 | 0.0533 |
|--------|--------|--------|--------|
|        |        | 333.06 | 0.023  |
|        |        | 329.2  | 0.0027 |
|        |        | 327.74 | 0.064  |
|        |        | 326.43 | 0.0036 |
|        |        | 325.62 | 0.0085 |
|        |        | 325.07 | 0.0458 |
|        |        | 323.84 | 0.0189 |
|        |        | 323.04 | 0.0647 |
|        |        | 321.93 | 0.0147 |
|        |        | 316.88 | 0.0305 |
|        |        | 316.15 | 0.0541 |
|        |        | 313.37 | 0.0125 |
|        |        | 313.27 | 0.013  |
|        |        | 312.48 | 0.0241 |
|        |        | 311.41 | 0.0463 |
|        |        | 310.84 | 0.0078 |
|        |        | 310.33 | 0.0588 |
|        |        | 309.26 | 0.0246 |

Table S5. Calculated wavelengths  $\lambda$  and oscillator strengths f for the relevant excitations in EWC4.

| Mono   | mer    | Dimer  |        | Trimer |        | Tetramer |        |
|--------|--------|--------|--------|--------|--------|----------|--------|
| λ [nm] | f      | λ [nm] | f      | λ [nm] | f      | λ [nm]   | f      |
| 702.86 | 0.3278 | 788.51 | 0.8365 | 820.58 | 1.2369 | 833.07   | 1.6592 |
| 514.9  | 0.0014 | 722.37 | 0.1788 | 768.12 | 0.3159 | 791.32   | 0.3747 |
| 490.73 | 0.0097 | 630.04 | 0.0354 | 728.9  | 0.1986 | 761.41   | 0.2949 |
| 438.28 | 0.007  | 614.93 | 0.0062 | 671.72 | 0.0233 | 725.44   | 0.1944 |
| 437.62 | 0.0659 | 531.02 | 0.0032 | 659.43 | 0.0198 |          |        |
| 414.22 | 0.0016 | 519.58 | 0.0006 | 645    | 0.0206 |          |        |
| 398.78 | 0.5302 | 514.7  | 0.0017 | 614.09 | 0.0138 |          |        |
| 394.69 | 0.0247 | 504.46 | 0.0008 | 592.4  | 0.0033 |          |        |
| 390.73 | 0.0269 | 499.49 | 0.0104 | 582.3  | 0.0019 |          |        |
| 381.08 | 0.2776 | 464.96 | 0.0001 | 539.08 | 0.0043 |          |        |
| 370.25 | 0.7303 | 448.73 | 0.0098 | 527.95 | 0.0039 |          |        |
| 366.43 | 0.1395 | 446.71 | 0.0178 | 518.82 | 0.001  |          |        |
| 342.47 | 0.0096 | 440.45 | 0.0281 | 516.97 | 0.0022 |          |        |
| 336.34 | 0.0062 | 439.91 | 0.0607 | 516.5  | 0.0004 |          |        |
| 333.86 | 0.1412 | 437.07 | 0.0022 | 508.08 | 0      |          |        |
| 332.38 | 0.0382 |        |        | 505.97 | 0.0007 |          |        |
| 329.08 | 0.0147 |        |        | 500.81 | 0.0105 |          |        |
| 327.8  | 0.0229 |        |        | 472.29 | 0.0031 |          |        |
| 326.47 | 0.0128 |        |        | 469.93 | 0.0024 |          |        |
| 323.18 | 0.1027 |        |        | 463.56 | 0.0082 |          |        |
| 320.81 | 0.0144 |        |        | 462.46 | 0.0153 |          |        |
| 316.15 | 0.0006 |        |        | 459.27 | 0.0007 |          |        |
| 311.14 | 0.0036 |        |        | 458.57 | 0.0005 |          |        |

| 304    | 0.0103 | 455.88 | 0.0002 |
|--------|--------|--------|--------|
| 301.78 | 0.0077 | 450.29 | 0.007  |
| 301.6  | 0.0337 | 449.64 | 0.0124 |
| 300.41 | 0.0056 | 439.65 | 0.0588 |
| 298.1  | 0.0024 | 438.4  | 0.0044 |
| 292.88 | 0.0918 | 437.64 | 0.0036 |
| 290.42 | 0.0914 | 436.94 | 0.0042 |
| 289.58 | 0.0233 |        |        |
| 288.91 | 0.1633 |        |        |
| 285.75 | 0.0009 |        |        |
| 282.56 | 0.0959 |        |        |
| 280.07 | 0.0146 |        |        |
| 279.37 | 0.0118 |        |        |
| 278.43 | 0.002  |        |        |
| 277.06 | 0.0313 |        |        |
| 275.47 | 0.1539 |        |        |
| 273.45 | 0.0047 |        |        |

Table S6. Calculated wavelengths  $\lambda$  and oscillator strengths f for the relevant excitations in BDT-Q.

| Monomer |        | Dime   |         | Tuine           | <b>~</b> | Donto  |        |
|---------|--------|--------|---------|-----------------|----------|--------|--------|
|         | ner    |        | er<br>r | ۱۲۱۳<br>ریستا د | er<br>r  | Pentar | ner    |
| Λ [nm]  | T      | Λ [nm] | T       | Λ [nm]          | T        | Λ [nm] | T      |
| 484.94  | 0.207  | 572    | 0.7313  | 614.6           | 1.5663   | 644.95 | 3.2308 |
| 395.16  | 0.1659 | 517.02 | 0.1449  | 556.84          | 0.1044   | 601.9  | 0.0051 |
| 369.29  | 0.4004 | 497.89 | 0.1012  | 535.88          | 0.0304   | 569.16 | 0.2862 |
| 363.56  | 0.0286 | 449.94 | 0.4772  | 523.39          | 0.1815   | 552.36 | 0.0081 |
| 361.02  | 0.0229 | 429.04 | 0.0038  | 504.01          | 0.1019   | 548.77 | 0.1511 |
| 356.79  | 0.0148 | 403.19 | 0.0795  | 480.08          | 0.0511   | 539.73 | 0.0192 |
| 349.48  | 0.0772 | 391.46 | 0.0079  | 467.8           | 0.5055   | 535.62 | 0.0374 |
| 332.17  | 0.0035 | 389.32 | 0.2676  | 460.5           | 0.1758   |        |        |
| 329.02  | 0.0145 | 385.73 | 0.1134  | 450.41          | 0.0052   |        |        |
| 321.94  | 0.0031 | 377.9  | 0.1681  | 439.71          | 0.0155   |        |        |
| 318.57  | 0.0527 | 373.33 | 0.3113  | 410.06          | 0.0249   |        |        |
| 308.94  | 0.2513 | 371.86 | 0.0944  | 407.97          | 0.1165   |        |        |
| 300.91  | 0.0028 | 369.25 | 0.0025  | 405.21          | 0.0334   |        |        |
| 295.52  | 0.2625 | 367.01 | 0.0159  | 399.46          | 0.389    |        |        |
| 291.17  | 0.0414 | 364.7  | 0.02    | 395.22          | 0.0156   |        |        |
| 290.23  | 0.0258 | 363.14 | 0.0202  | 392.32          | 0.0322   |        |        |
| 289.68  | 0.0857 | 361.68 | 0.0398  | 389.98          | 0.1426   |        |        |
| 287.35  | 0.0979 | 356.24 | 0.0056  | 386.3           | 0.141    |        |        |
| 282.25  | 0.0012 | 355.28 | 0.0241  | 383.62          | 0.0324   |        |        |
| 281.71  | 0.0175 | 354.41 | 0.0563  |                 |          |        |        |
|         |        | 351.98 | 0.0062  |                 |          |        |        |
|         |        | 350.51 | 0.0259  |                 |          |        |        |
|         |        | 347.81 | 0.0018  |                 |          |        |        |
|         |        | 343.95 | 0.1567  |                 |          |        |        |
|         |        | 342.55 | 0.0807  |                 |          |        |        |

| 1          |        |
|------------|--------|
| 340.26     | 0.0109 |
| 332.62     | 0.0291 |
| 332.13     | 0.0233 |
| 331.07     | 0.0198 |
| 329.45     | 0.0064 |
| 325.88     | 0.1009 |
| 324.03     | 0.0186 |
| 323.84     | 0.1295 |
| 322.32     | 0.1424 |
| 320.85     | 0.1101 |
| 319.27     | 0.0735 |
| 318.69     | 0.0677 |
| 315.83     | 0.0081 |
| 314.33     | 0.0014 |
| 310.05     | 0.0031 |
| 308.82     | 0.0257 |
| <br>305.52 | 0.0075 |

Table S7. Calculated wavelengths  $\lambda$  and oscillator strengths f for the relevant excitations in BDT-T-TP-T.

| Mono   | mer    | Dim    | er     | Trim   | er     | Penta  | mer    |
|--------|--------|--------|--------|--------|--------|--------|--------|
| λ [nm] | f      |
| 643.42 | 0.5309 | 754.04 | 1.8303 | 801.91 | 3.2254 | 836.21 | 5.9256 |
| 504.65 | 0.0208 | 660.08 | 0.1065 | 718.85 | 0.0012 | 782.52 | 0.0059 |
| 435.74 | 0.4402 | 609.01 | 0.0099 | 666.32 | 0.1806 | 734.2  | 0.4412 |
| 422.38 | 0.0625 | 562.8  | 0.0498 |        |        |        |        |
| 410.4  | 0.0884 | 534.1  | 0.0037 |        |        |        |        |
| 394.06 | 0.0252 | 513.91 | 0.0873 |        |        |        |        |
| 382.85 | 0.0139 | 493.56 | 0.0036 |        |        |        |        |
| 370.97 | 0.2204 | 473.72 | 0.8407 |        |        |        |        |
| 367.78 | 0.0054 | 453.95 | 0.1874 |        |        |        |        |
| 359.36 | 0.3089 | 452.32 | 0.1296 |        |        |        |        |
| 355.57 | 0.1674 | 443.82 | 0.0853 |        |        |        |        |
| 350.91 | 0.4115 | 427.3  | 0.0081 |        |        |        |        |
| 341.7  | 0.0235 | 424.07 | 0.0311 |        |        |        |        |
| 324.43 | 0.0104 | 421.67 | 0.022  |        |        |        |        |
| 321.92 | 0.0173 | 412.39 | 0.0773 |        |        |        |        |
| 318.15 | 0.0064 | 407.43 | 0.0175 |        |        |        |        |
| 316.77 | 0.0119 | 396.57 | 0.0192 |        |        |        |        |
| 313.57 | 0.0662 | 392.27 | 0.0497 |        |        |        |        |
| 308.68 | 0.0274 | 388.18 | 0.0029 |        |        |        |        |
| 306.28 | 0.0242 | 387.03 | 0.0068 |        |        |        |        |
|        |        | 385.62 | 0.0172 |        |        |        |        |
|        |        | 384.43 | 0.0628 |        |        |        |        |
|        |        | 382.83 | 0.0046 |        |        |        |        |
|        |        | 380.33 | 0.0373 |        |        |        |        |
|        |        | 375.69 | 0.0663 |        |        |        |        |

| 1      |        |
|--------|--------|
| 373.99 | 0.1756 |
| 372.08 | 0.0419 |
| 370.79 | 0.456  |
| 367.57 | 0.0045 |
| 366.29 | 0.1604 |
| 365.38 | 0.0534 |
| 362.05 | 0.1994 |
| 361.15 | 0.018  |
| 360.85 | 0.0478 |
| 356.19 | 0.0282 |
| 355.97 | 0.1787 |
| 354.16 | 0.2657 |
| 350.56 | 0.0093 |
| 348.15 | 0.0028 |
| 346.39 | 0.0451 |
| 344.71 | 0.0145 |
| 343.29 | 0.0298 |
| 338.49 | 0.011  |
| 337.23 | 0.0355 |
| 335.38 | 0.0048 |
| 332.61 | 0.0044 |

Table S8. Calculated wavelengths  $\lambda$  and oscillator strengths f for the relevant excitations in BDT-BTz.

\_\_\_\_\_

| Monomer |        | Dim    | er     | Trim   | er     | Penta  | mer    |
|---------|--------|--------|--------|--------|--------|--------|--------|
| λ [nm]  | f      | λ [nm] | f      | λ [nm] | f      | λ [nm] | f      |
| 400.74  | 0.2852 | 494.44 | 1.637  | 542.01 | 3.0103 | 581.79 | 5.5611 |
| 339.87  | 0.4438 | 444.92 | 0.0386 | 472.11 | 0.0025 | 525.79 | 0.0042 |
| 299.41  | 0.1665 | 403.43 | 0.5391 | 454.82 | 0.0086 | 493.29 | 0.0036 |
| 275.25  | 0.0321 |        |        | 452.59 | 0.0735 | 485.19 | 0.38   |
| 271.55  | 0.0025 |        |        | 418.57 | 0.3183 | 468.52 | 0.2263 |
| 263     | 0.0816 |        |        | 410.56 | 0.443  | 465.79 | 0.0209 |
| 260.61  | 0.0305 |        |        | 399.21 | 0.0427 |        |        |
| 248.77  | 0.2029 |        |        | 397.3  | 0.0038 |        |        |
| 243.47  | 0.0133 |        |        | 391.58 | 0.0213 |        |        |
| 239.55  | 0.0019 |        |        | 367.25 | 0.0025 |        |        |
| 238.22  | 0.0109 |        |        | 361.09 | 0.0004 |        |        |
| 233.97  | 0.0023 |        |        | 358.45 | 0.1246 |        |        |
| 232.59  | 0.0037 |        |        | 346.81 | 0.1488 |        |        |
| 226.62  | 0.0206 |        |        | 336.57 | 0.0096 |        |        |
| 225.74  | 0.031  |        |        | 329.03 | 0.0169 |        |        |
| 224.5   | 0.0097 |        |        | 326.55 | 0.0175 |        |        |
| 221.98  | 0.1155 |        |        | 319.77 | 0.0027 |        |        |
| 218.76  | 0.1072 |        |        | 312.91 | 0.057  |        |        |
| 217.32  | 0.0691 |        |        | 312.11 | 0.1092 |        |        |
| 216.9   | 0.0321 |        |        | 306.98 | 0.0652 |        |        |
|         |        |        |        | 305.77 | 0.2216 |        |        |

| 299.28 | 0.0211 |
|--------|--------|
| 296.43 | 0.0138 |
| 293.66 | 0.1395 |
| 291.73 | 0.001  |
| 291.33 | 0.0075 |

Table S9. Calculated wavelengths  $\lambda$  and oscillator strengths f for the relevant excitations in TQ1.

| Monomer |        | Dimer  |        | Trimer |        | Tetramer |        | Pentamer |        |
|---------|--------|--------|--------|--------|--------|----------|--------|----------|--------|
| λ [nm]  | f      | λ [nm] | f      | λ [nm] | f      | λ [nm]   | f      | λ [nm]   | f      |
| 390.61  | 0.1315 | 496.61 | 0.4625 | 549.82 | 1.0025 | 579.12   | 1.5258 | 595.97   | 2.0828 |
| 357.47  | 0.0253 | 428.02 | 0.0441 | 479.1  | 0.0045 | 505.65   | 0.013  | 533.97   | 0.0172 |
| 351.79  | 0.0314 | 402.23 | 0.0232 | 441.42 | 0.0466 | 473.88   | 0.0386 | 495.56   | 0.0362 |
| 344.39  | 0.0671 | 393.22 | 0.0829 | 433.25 | 0.0112 | 469.37   | 0.005  | 486.96   | 0.006  |
| 324.05  | 0.0093 | 386.9  | 0.0336 | 409.48 | 0.0375 | 445.38   | 0.0489 | 471.74   | 0.0099 |
| 304.31  | 0.1879 | 366.09 | 0.0482 | 403.6  | 0.0201 | 431.03   | 0.0446 | 459.21   | 0.1329 |
| 294.22  | 0.0787 | 364.82 | 0.0103 | 394.12 | 0.004  | 413.81   | 0.0154 | 445.23   | 0.0315 |
| 290.05  | 0.0877 | 362.33 | 0.0075 | 390.79 | 0.0195 | 405.59   | 0.0345 | 431.8    | 0.0028 |
| 280.05  | 0.0571 | 358.79 | 0.0038 | 388.59 | 0.0251 | 402.92   | 0.0404 | 428.48   | 0.0127 |
| 278.32  | 0.0521 | 353.95 | 0.0362 | 382.49 | 0.0443 | 400.54   | 0.0016 | 416.94   | 0.0107 |
| 275.05  | 0.0031 | 349.35 | 0.0303 | 371.2  | 0.0031 | 397.41   | 0.0129 | 410.61   | 0.0202 |
| 265.59  | 0.3613 | 339.12 | 0.0068 | 369.28 | 0.057  | 392.16   | 0.0239 | 406.76   | 0.0033 |
| 262.14  | 0.0529 | 337.55 | 0.0215 | 366.52 | 0.0096 | 386.95   | 0.0068 | 405.72   | 0.0444 |
| 251.08  | 0.06   | 331.61 | 0.0042 | 365.75 | 0.0206 | 385.96   | 0.0177 | 403.41   | 0.0267 |
| 248.4   | 0.0337 | 328.54 | 0.1656 | 363.8  | 0.0069 | 378.21   | 0.0432 | 402.08   | 0.007  |
| 245.59  | 0.0227 | 325.78 | 0.0225 | 361.69 | 0.0206 | 376.52   | 0.0015 | 396.4    | 0.058  |
| 242.46  | 0.0006 | 324.09 | 0.0774 | 359.26 | 0.0895 | 374.2    | 0.0038 | 393.82   | 0.0078 |
| 240.66  | 0.0102 | 319.35 | 0.3206 | 358.77 | 0.0056 | 372.43   | 0.0032 | 392.62   | 0.0301 |
| 239.49  | 0.0246 | 317.28 | 0.0812 | 355.81 | 0.0042 | 372.19   | 0.0217 | 390.25   | 0.0122 |
| 235.81  | 0.0296 | 314.28 | 0.023  | 352.66 | 0.0054 | 369.12   | 0.0262 | 388.54   | 0.0272 |
|         |        | 308.03 | 0.0772 | 351.22 | 0.0028 | 367.06   | 0.0187 | 384.57   | 0.0067 |
|         |        | 304.1  | 0.0175 | 349.29 | 0.04   | 365.45   | 0.0244 | 380.82   | 0.002  |
|         |        | 303.88 | 0.153  | 345.56 | 0.2472 | 364.67   | 0.035  | 378.21   | 0.0022 |
|         |        | 299.62 | 0.0435 | 343.59 | 0.0721 | 363.57   | 0.0732 | 376.06   | 0.0026 |
|         |        | 297.5  | 0.0092 | 341.76 | 0.1096 | 361.15   | 0.0217 | 374.2    | 0.0094 |
|         |        |        |        | 340.41 | 0.0238 | 360.19   | 0.0362 | 373.9    | 0.0117 |
|         |        |        |        | 338.63 | 0.0591 | 358.92   | 0.0243 | 372.55   | 0.0067 |
|         |        |        |        | 336.01 | 0.1545 | 356.74   | 0.0129 | 371.52   | 0.0127 |
|         |        |        |        | 334.53 | 0.016  | 355.11   | 0.0071 | 368.96   | 0.0324 |
|         |        |        |        | 333.14 | 0.0727 | 354.35   | 0.0282 | 367.66   | 0.0428 |
|         |        |        |        | 331.21 | 0.1966 | 353.15   | 0.029  | 367.38   | 0.0173 |
|         |        |        |        | 329.77 | 0.0516 | 350.81   | 0.3789 | 366.75   | 0.006  |
|         |        |        |        | 321.28 | 0.024  | 349.63   | 0.1347 | 365.06   | 0.0386 |
|         |        |        |        | 319.84 | 0.019  | 348.56   | 0.0044 | 364.8    | 0.0677 |
|         |        |        |        | 318.15 | 0.0378 | 346.65   | 0.0271 | 364.05   | 0.0025 |
|         |        |        |        | 314.5  | 0.0221 | 345.33   | 0.0156 | 363.34   | 0.0092 |
|         |        |        |        | 312.73 | 0.0098 | 343.51   | 0.1994 | 362.11   | 0.0944 |

|        |        |        |        | 312.37 | 0.0084 | 342.14 | 0.0704 | 359.84 | 0.0025 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|        |        |        |        | 312.15 | 0.0242 | 341.2  | 0.0765 | 358.8  | 0.0004 |
|        |        |        |        | 309.95 | 0.0322 | 338.6  | 0.0436 | 358.3  | 0.0591 |
|        |        |        |        | 308.23 | 0.0043 | 337.43 | 0.009  | 357.11 | 0.0052 |
|        |        |        |        | 307.34 | 0.0229 |        |        | 356.43 | 0.0088 |
|        |        |        |        | 306.93 | 0.0076 |        |        |        |        |
|        |        |        |        | 306.01 | 0.0749 |        |        |        |        |
|        |        |        |        | 303.98 | 0.008  |        |        |        |        |
|        |        |        |        | 303.72 | 0.0159 |        |        |        |        |
|        |        |        |        | 303.25 | 0.0684 |        |        |        |        |
|        |        |        |        | 302.03 | 0.0738 |        |        |        |        |
|        |        |        |        | 300.53 | 0.0441 |        |        |        |        |
|        |        |        |        | 299.12 | 0.0151 |        |        |        |        |
| Hexar  | ner    | Hepta  | mer    | Octar  | mer    | Nona   | mer    |        |        |
| λ [nm] | f      |        |        |
| 606.27 | 2.5849 | 614.7  | 3.1755 | 622.68 | 3.7345 | 626.84 | 4.2989 |        |        |
| 550.83 | 0.0335 | 565.99 | 0.0147 |        |        | 591.46 | 0.0154 |        |        |

## Polarizable continuum model (PCM) solvent absorption calculations

**Table S3.** Solvatochromic shifts of 4 of the polymers at different oligomer sizes. Calculated as the difference in first transition energy from TD-DFT with and without o-DCB PCM.

| E <sub>abs</sub> (PCM)-E <sub>abs</sub> (vacuum) [meV] |      |       |       |       |      |       |       |  |  |  |  |
|--------------------------------------------------------|------|-------|-------|-------|------|-------|-------|--|--|--|--|
| n                                                      | 1    | 2     | 3     | 4     | 5    | 6     | 9     |  |  |  |  |
| BDT-BTz                                                | -3.3 | -44.2 | -31.0 |       | -7.2 |       |       |  |  |  |  |
| TQ1                                                    |      | -41.8 | -44.9 | -36.6 |      | -22.5 | -12.7 |  |  |  |  |
| APFO-G9                                                | 2.7  | 20.7  | 31.6  | 36.2  |      |       |       |  |  |  |  |
| TBDT-Q                                                 | 15.4 | 16.1  | 13.5  |       | 23.1 |       |       |  |  |  |  |



**Figure S8.** Calculated  $F_M$  with and without PCM solvent for 5 of the polymers. The  $F_M$  increase upon adding solvent is indicated in %.

#### **Supporting Information References**

- (1) Barford, W. *Electronic and Optical Properties of Conjugated Polymers*; Oxford University Press: Oxford, 2013.
- (2) Tanimoto, A.; Yamamoto, T. Adv. Synth. Catal. 2004, 346, 1818–1823.
- (3) Hou, J.; Chen, H.-Y.; Zhang, S.; Chen, R. I.; Yang, Y.; Wu, Y.; Li, G. J. Am. Chem. Soc. **2009**, *131*, 15586–15587.
- (4) Hellstrom, S.; Lindgren, L. J.; Zhou, Y.; Zhang, F.; Inganas, O.; Andersson, M. R. *Polym. Chem.* **2010**, *1*, 1272–1280.
- (5) Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belletête, M.; Durocher, G.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2008, 130, 732–742.
- (6) Zhang, F.; Bijleveld, J.; Perzon, E.; Tvingstedt, K.; Barrau, S.; Inganas, O.; Andersson, M. R. J. Mater. Chem. 2008, 18, 5468–5474.
- (7) Wang, E.; Hou, L.; Wang, Z.; Hellström, S.; Mammo, W.; Zhang, F.; Inganäs, O.; Andersson, M. R. *Org. Lett.* **2010**, *12*, 4470–4473.