Supporting Information

for Physical Chemistry Chemical Physics

Supporting Information

Construction of High Efficiency Non-doped Deep Blue Eimitter Based on Phenanthroimidazole: Remarkable Substitution Effects on the Excited State Properties and Device Performance

Zhiming Wang^[a]*, Ying Feng^[a], Shitong Zhang^[b], Yu Gao^[b], Zhao Gao^[b], Yanming Chen^[a], Xiaojuan Zhang^[a], Ping Lu^[b], Bing Yang^[b], Ping Chen^[c]*, Yuguang Ma^[b], Shiyong Liu^[c]

^[a] School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China
^[b] State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
^[c] State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China

Contents

- 1. Synthesis
- 2. Thermal Properties
- 3. CV Measurements
- 4. Optimized structures of BPPI and N-BPPI
- 5. S1 to S10 NTO of BPPI and N-BPPI
- 6. The solvatochromic Lippert-Mataga model
- 7. Electroluminescence devices

1. Synthesis

Scheme S1 The synthetic routes to BPPI and N-BPPI.

2-(4-bromophenyl)-1-phenyl-1H-phenanthro[9,10-d]imidazole (M1)

A mixture of aniline (4.7 g, 50.0 mmol), phenanthrenequinone (2.08 g, 10.0 mmol), benzaldehyde (1.85g, 10.0 mmol), ammonium acetate (3.08 g, 40.0 mmol), and acetic acid (80 mL) was heated under nitrogen in an oil bath to 120 °C. The mixture was maintained at this temperature for 2 h, and then cooled and filtered. The solid product was washed with an acetic acid/water mixture (1:1, 150 mL X 2), and washed with water to obtain the light-yellow crystals (4.09 g, 91.4% yield). ¹H NMR (500 MHz, DMSO, ppm): 8.94 (d, 1H), 8.88 (d, 1H), 8.69 (d, 1H), 7.78 (t, 1H), 7.75-7.60 (m, 6H), 7.60-7.54 (m, 3H), 7.50 (d, 2H), 7.34 (t, 1H), 7.08 (d, 1H). MALDI-TOF (*m/z*): [M+] calcd. *C2*₇H₁₇N₂Br, 448.06; found, 450.3.

1-(4-bromophenyl)-2-phenyl-1H-phenanthro[9,10-d]imidazole (M2)

A mixture of 4-bromobenzenamine (8.5 g, 50.0 mmol), phenanthrenequinone (2.08 g, 10.0 mmol), benzaldehyde (1.06g, 10.0 mmol), ammonium acetate (3.08 g, 40.0mmol), and acetic acid (80 mL) was heated under nitrogen in an oil bath to a bath temperature of 120 °C, The mixture was maintained at this temperature for 2 h, and then cooled and filtered. The solid product was washed with an acetic acid/water mixture (1:1, 150 mL X 2) and washed with water to obtain the light-yellow crystals (4.19 g, 93.0% yield). ¹H NMR (500 MHz, DMSO, ppm): 8.95 (d, 1H), 8.89 (d, 1H), 8.73 (d, 1H), 7.89(d, 1H), 7.78 (t, 1H), 7.73-7.64 (m, 4H), 7.47-7.31 (m, 3H), 7.10 (d,

1H). MALDI-TOF (*m*/*z*): [M+] calcd. C2₇H₁₇N₂Br, 448.06; found, 451.3.

BPPI or N-BPPI: A mixture of M1 or M2 (0.5 g, 1.12 mmol), 4,4,4',4',5,5,5',5'octamethyl-2,2'-bi(1,3,2- dioxaborolane) (0.15 g, 0.56 mmol), Pd(PPh₃)₄ (25 mg, 0.03
mmol), and sodium carbonate (0.53 g, 5 mmol) in THF (20 mL) and distilled water
(2.5 mL) was refluxed for 2 d under nitrogen. The crude product was concentrated by
rotary evaporation and filtered. After drying at 40°C in a vacuum baking oven, the
powder was purified by column chromatography.

Fig. S1 FTIR spectra of BPPI and N-BPPI.

2. Thermal Properties

Fig. S2 The TGA graphs of BPPI and N-BPPI.

Fig. S3 The DSC graphs of PPI, BPPI and N-BPPI.

3. CV Measurements

Fig. S4 The CV curve of PPI, BPPI and N-BPPI.

Tab. S1 Electrochemical data for PPI, BPPI and N-BPPI.

	E ^{ox} onset	E ^{red} onset	HOMO ^[a]	LUMO ^[a]	Egap
	(V)	(V)	(eV)	(eV)	(eV)
PPI	0.95	-2.65	-5.53	-2.07	3.46
BPPI	0.89	-2.43	-5.47	-2.29	3.18
NBPPI	0.98	-2.34	-5.59	-2.34	3.32

[a]. Calculated by comparing with ferrocene (Fc) (4.8 eV) and calibrated using $E_{1/2}$ (Fc/Fc⁺) measurement.

Because the electrolyte concentration influenced the onset oxidation/reduction potential, the values of HOMO/LUMO was inaccurate by estimating only from the data above. For increasing the accuracy, the ferrocene was usually applied as a reference to calibrate this difference. Concretely in every measurement, the compound

was dissolved in CH₂Cl₂ or DMF with ~ 0.1 M tetra-n-butylammonium hexafluorophosphate (n-Bu₄NPF₆) at room temperature, and the CV sweep was done to get the onset oxidation/reduction potential (E ^{ox}_{onset} or E^{red}_{onset}). In the same concentration of electrolyte, the CV sweep of ferrocene was also done to gain the calibrated value of $E_{1/2}$ (Fc/Fc⁺). At last, the more accurate values of HOMO/LUMO were calculated as below:

$$E_{HOMO} = - | eE^{ox}_{onset} + (4.80eV - E_{1/2} (Fc/Fc^+)) |$$

 $E_{LUMO} = - | eE^{red}_{onset} + (4.80eV - E_{1/2} (Fc/Fc^{+})) |$

4. Optimized structures of BPPI and N-BPPI

Table.S2 The optimized twist angles in the lowest energy ground state.

	<i>N1-</i> ТА	С2-ТА	В-ТА
BPPI	80.6 °	30.2 °	33.6 °
N-BPPI	77.7 °	32.3 °	37.1 °

5. S1 to S10 NTO of BPPI and N-BPPI

BPPI

Fig. S5 S1 to S10 NTO of BPPI

N-BPPI

Fig. S6 S1 to S10 NTO of N-BPPI

6. The solvatochromic Lippert-Mataga model

The Lippert-Mataga model is estimated according to Equation 1 as shown below:

$$hc(v_{a} - v_{f}) = hc(v_{a}^{0} - v_{f}^{0}) + \frac{2(\mu_{e} - \mu_{g})^{2}}{a_{0}^{3}}f(\varepsilon, n)$$
Equation 1

where h is the Plank constant, c is the light speed in vacuum, $f(\varepsilon,n)$ is the

orientational polarizability of solvents and $f(\varepsilon,n) = \left[\frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 - 1}\right]$, $v_a^0 - v_f^0$ is the Stokes shifts when *f* is zero, a_0 is the solvent Onsager cavity radius, μ_e and μ_g are dipole moments of excited-state and ground-state, respectively. ε is the solvent dielectric constant and *n* is the solvent refractive index. a_0 and μ_g were estimated at the level of b3lyp/6-31g(d,p) from the Gaussian09 package.

Results: **BPPI**(a_0 =0.714 nm and μ_g = 4.579D) **N-BPPI** (a_0 =0.699 nm and μ_g = 0.2693D)

Table-S3 The solvatochromic properties of BPPI

BPPI					
Solvents	$f(\varepsilon,n)$	$\lambda_a(nm)$	$\lambda_{\rm f}~(nm)$	$v_a - v_f (cm^{-1})$	
Hexane	0.0012	368	412	2902.06838	
Ethylamine	0.048	369	414	2945.68163	
Butylether	0.096	370	415	2930.64148	
Ethylether	0.167	368	415	3077.52750	
Ethylacetate	0.2	368	419	3307.56459	
Tetrahydrofura	0.21	260	421	2247 20100	
n	0.21	309	421	5547.50188	
Acetone	0.284	366	443	4749.04094	
Acetonitrile	0.305	365	445	4925.35016	

In low-polarity solvents (the former six):

Slope = 2093.37370337; Correlation = 0.90452685; $\mu_e = 7.80178524$

In high-polarity solvents (the latter five):

Slope = 14721.10104476; Correlation = 0.98619292; $\mu_e = 20.68905984$

N-BPPI					
Solvents	$f(\varepsilon,n)$	$\lambda_a(nm)$	$\lambda_{\rm f}~(nm)$	$v_a - v_f (cm^{-1})$	
Hexane	0.0012	360	363	229.56841	
Ethylamine	0.048	361	365	303.57075	
Butylether	0.096	361	366	378.42665	
Ethylether	0.167	360	366	455.37341	
Ethylacetate	0.2	361	369	600.56002	
Tetrahydrofura n	0.21	360	369	677.50678	
Acetone	0.284	359	373	1045.50173	
Acetonitrile	0.305	357	374	1273.23657	

Table-S4 The solvatochromic properties of N-BPPI

In all solvents:

Slope = 3176.50335005; Correlation = 0.93557306; $\mu_e = 9.61048417$

7. Electroluminescence devices

Fig. S7 The current density versus voltage in the BPPI and N-BPPI devices.

Fig. S8 The luminance versus voltage in the BPPI and N-BPPI devices.