Supporting Information

Origin of Ion Selectivity at the Air/Water Interface

Lu Sun, Xin Li, Yaoquan Tu, and Hans Ågren*

Division of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-10691 Stockholm, Sweden

Table S1 Ionic Properties

	R_{hy1}	R_{hy2}	N _{hb_11}		L _{hb} (Å)		L _{cen} (Å)		D (Debye)		τ_{w_w}
	(nm)	(nm)	Bulk	Interface	Bulk	Interface	Bulk	Interface	Bulk	Interface	(ps)
Water	0.328	0.574	0.33	0.17	1.91	1.97			2.56	2.35	3.36
F-	0.328	0.567	0.3	0.21	1.82	1.78	0.55	0.90	1.36	1.76	3.59
Cl-	0.365	0.604	0.4	0.21	2.29	2.25	0.87	1.39	2.06	2.56	3.42
Br-	0.378	0.616	0.4	0.22	2.42	2.39	1.02	1.58	2.67	3.12	3.41
I-	0.396	0.635	0.5	0.21	2.64	2.62	1.15	1.85	3.24	3.75	3.36
Na ⁺	0.316	0.53	0.3	0.44			0.31	0.37	0.03	0.03	3.70
K^+	0.356	0.562	1.5	1.70			0.40	0.49	0.12	0.13	3.59
Rb^+	0.374	0.584	2.5	2.72			0.44	0.59	0.18	0.20	3.59
Cs^+	0.416	0.596	4.9	4.95			0.49	0.69	0.27	0.32	3.65

 R_{hy1} and R_{hy2} are the places where first and second solvation shell end. $N_{hb_{11}}$ is the number of hydrogen bonds formed between water in first hydration shell. L_{hb} is the hydrogen bond length. L_{cen} is the distance from ion to the mass center of first solvation shell water. D is the dipole moment. τ_{w_w} denotes the average lifetime of water-water hydrogen bond. A hydrogen-bond is formed if the water is in the first solvation shell and the O-H-A(A denotes the hydrogen acceptor) angle is over 130°.

(a)

(b)

(e)

Figure S1. (a)The strong electrostatic attraction and weak Pauli repulsion make the smallest cation Li⁺ hard to dissociate. (b) Snapshot of LiF in the water cluster with Li⁺ and F⁻ denoted as cyan and green balls. (c) Snapshot of KF in the water cluster with K⁺ and I⁻ denoted as yellow and purple balls. (d) Polarization influences the distribution of Cl⁻. The solid, dashed, and dotted lines represent the number densities of Cl⁻ with the polarizability of 0.003969 nm⁻³, 0.001786 nm⁻³, and 0.0 nm⁻³, respectively. (e) With the polarizability of F⁻ increased from 0.001786 nm⁻³ (solid line) to 0.003969 nm⁻³ (dashed line), F⁻ ions get much closer to the interface.

Figure S2. Interaction energies of anions with (a) non-hydrogen-bonded and (b) hydrogen-bonded water in the first hydration shell of anions.(c) The normal component of dipole moment of anions. Here K^+ is the cation.

Figure S3. Hydrogen bonds formation among water. Most of water in the bulk is fully bonded. It's interesting that dual-donor no-acceptor water increase most prompt to react to the breaking of water-water hydrogen bonds, resulting water donating a little more than it accepts somewhat beneath the interface.

Figure S4. Water structure affected by cations. (a) The decreasing water-water hydrogen bond percentage with F^- as anions. Average interaction energy between a water molecule and its solvation shell, with the counterion as (b) F^- or (c) I^- . The cations also follow the rule the smaller the more influential. But the influence is not as significant as anions.