Electronic supplementary information for:

Ammonia-modified Co(II) sites in zeolites: IR spectroscopy and spinresolved charge transfer analysis for NO adsorption complexes

Kinga Góra-Marek¹, Adam Stępniewski², Mariusz Radoń¹ and Ewa Broclawik²

¹ Faculty of Chemistry, Jagiellonian University in Kraków,. Ingardena 3, 30-060 Krakow, Poland

² Jerzy Haber Institute of Catalysis PAS, Niezapominajek 8, 30-239 Krakow, Poland

Fig. S1. Optimized geometry of [T1Co(NO)]⁺ (left) and [T1Co(H₂O)₂(NO)]⁺ (right)

Fig. S2. Spin densities for triplet complexes $[T1Co(NO)]^+$ (left) and $[T1Co(H_2O)_2(NO)]^+$ (right)

Table S1. The comparison of calculated charge and spin densities of $[T1Co(NO)]^+$ and $[T1Co(H_2O)_2(NO)]^+$ models

	Q ^{NO a)}				ρs ^{NO a)}			
Model	NO	Co	O ^{b)}	O c)	NO	Co	O ^{b)}	O c)
[T1Co(NO)]+	0.21	0.70	-0.54		0.40	2.00	0.11	
[T1Co(H ₂ O) ₂ (NO)] ⁺	0.22	0.55	-0.55	-0.51	0.43	2.19	0.04	0.07

a) from Mulliken population analysisb) oxygen atom from Co-O-Al unitc) oxygen atom from water molecule

Madal	[T1Co(NO)]+	[T1Co(H ₂ O) ₂ (NO)] ⁺	[T1Co(NH ₃) ₃ (NO)] ⁺		[Co(NH ₃) ₅ (NO)] ²⁺	
WIGGEI		(a)	(b _S)	(b _T)	(c)	
α_{Co-N-O} /deg	180	180	122	148	123 (119)	
$\alpha_{Al-Co-N}$ /deg	180	180	129	142		
d _{Co-NO} /Å	1.67	1.69	1.79	1.70	1.84 (1.87)	
d _{N-O} /Å	1.14	1.14	1.19	1.16	1.17 (1.15)	
d _{Co-NH3} /Å			2 ^{a)}	2.15 ^{a)}	2.03 ^{c)} (1.98)	
			2 ^{b)}	2.19 ^{b)}	2.40 ^d) (2.22)	
d _{Со-О(Н2} О)/Å		2.19				
d _{C0-O} /Å ^{e)}	1.88	1.07	1.94	2.03		
		1.97	2.20	2.12		
d _{Al-O} /Å ^{e)}	1.88	1.86	1.82	1.81		
	1.00	1.00	1.85	1.84		
d _{Al-O} /Å f)	1.70	1.71	1.72	1.72		

Table S2. Geometric parameters calculated for studied systems (available experimental values for pentaaminenitrosylcobalt(II) complex ^{g)} in italics)

a) in plane of Co-O-Al-O motif

b) out of plane of Co-O-Al-O motif

c) average equatorial C-NH3 bond

d) axial C-NH3 bond

e) oxygen atom from Co-O-Al unit

f) peripheral oxygen atom

g) after C.S. Pratt, B.A. Coyle, J.A. Ibers, J. Chem. Soc. (A), 1971, 2146.

Eurotional	Relative energy (kcal/mol)				
Functional	(b _S)	(b _T)			
BP86	0	5.2			
PBE	0	5.0			
B3LYP	3.3	0			
PBE0	7.0	0			
TPSSh	0	1.9			

Table S3. Comparison of relative energy calculated by various exchange-correlation functionals for singlet (\mathbf{b}_S) and triplet (\mathbf{b}_T) of $[T1Co(NH_3)_3(NO)]^+$