Supplementary Information

An integrated computational tool to model the broadening of absorption bands of flexible dyes in solution: cationic chromophores as test cases

Enrico Benassi,^a* Chiara Cappelli,^b Benedetta Carlotti,^c and Vincenzo Barone^a*

^a Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy).

^b Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Risorgimento 35, 56126 Pisa (Italy).

^c Department of Chemistry, Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, via Elce di Sotto 8, 06123 Perugia (Italy).

* To whom the correspondence should be addressed to: enrico.benassi@sns.it; vincenzo.barone@sns.it

Figure SI.1. Plot of the frontier molecular orbitals of the betaine dye **B**. Level of theory: DFT PBE0/SNSD/IEF–PCM (solvent = 1,4–dioxane).

Table SI.1. Sum of partial atomic Mulliken charges (Q) of the atoms forming the methyl-pyridinium or methyl-quinolinium ring (moiety A) and of the rest of the system (moiety B), and electric dipole moment *moduli* (μ), when S_0 or the adiabatic S_1 are populated. $\theta(\mu_0, \mu_1)$ is the theory: angle defined by the two vectors and Level of DFT μ_0 **μ**1. CAM-B3LYP/6-31+G*/IEF-PCM (solvent = DCM).

		S_0			S_1		
	$Q_0(\mathbf{A}) / e $	$Q_0(\mathbf{B}) / e $	$\mu_0 \ / \ D$	$Q_1(\mathbf{A}) / \mathbf{e} $	$Q_1(\mathbf{B}) / e $	$\mu_1 \ / \ D$	$\theta(\mu_0,\mu_1)$ / degs
1	0.488	0.512	7.1	0.206	0.794	3.1	116
2	0.230	0.385	0.9	-0.074	0.537	4.2	6
3	1.409	-0.409	9.9	0.567	0.433	2.6	92
4	2.155	-1.155	1.6	0.174	0.826	9.4	112
5	1.041	-0.041	2.9	0.631	0.369	8.5	137
6	0.943	0.057	17.7	0.640	0.360	6.0	14
7	1.291	-0.291	17.9	1.016	-0.016	5.0	13

Figure SI.2. Evaluation of the frontier MOs of dimethylamino–benzene (D), methyl–pyridinium (A₁) and methyl–quinolinium (A₂), at different levels of theory.