Estimating the Binding Ability of Onium Ions with CO₂ and π Systems: A Computational Investigation

M. Althaf Hussain, A. Subha Mahadevi and G. Narahari Sastry*

Centre for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Andhra Pradesh, India, 500607.

Supporting Information

(25 Pages including contents page)

Contents	Page No
Table S1. Calculated topological properties at the (3,-1) critical points of various $CO_2 \cdots \pi$ complexes,	2
obtained from M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) level of theory. All values are in au.	2
Table S2. Calculated topological properties at the $(3,-1)$ critical points of various ammonium ion π	4
$complexes, obtained from M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) \ level \ of \ theory. \ All \ values \ are \ in \ au.$	4
Table S3. Calculated topological properties at the $(3,-1)$ critical points of various phosphonium ion $\cdots \pi$	6
complexes, obtained from M06-2X/6-311++ $G(d,p)//M06-2X/6-31G(d)$ level of theory. All values are in au.	0
Table S4. Calculated topological properties at the (3,-1) critical points of various hydronium ion $\cdots \pi$	0
complexes, obtained from M06-2X/6-311++ $G(d,p)//M06-2X/6-31G(d)$ level of theory. All values are in au.	9
Table S5. Calculated topological properties at the $(3,-1)$ critical points of various sulfonium ion π	11
complexes, obtained from M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) level of theory. All values are in au.	11
Table S6. Contribution of various factors towards the total binding energy as calculated at the M06-2X/6-	12
31G(d) level using the LMO-EDA approach for the $CO_2 \cdots \pi$ complexes.	13
Table S7. Contribution of various factors towards the total binding energy as calculated at the M06-2X/6-	14
31G(d) level using the LMO-EDA approach for the ammonium ion… π complexes.	14
Table S8. Contribution of various factors towards the total binding energy as calculated at the M06-2X/6-	1.7
31G(d) level using the LMO-EDA approach for the phosphonium ion π complexes.	15
Table S9. Contribution of various factors towards the total binding energy as calculated at the M06-2X/6-	16
31G(d) level using the LMO-EDA approach for the hydrnium ion π complexes.	16
Table S10. Contribution of various factors towards the total binding energy as calculated at the M06-2X/6-	17
31G(d) level using the LMO-EDA approach for the sulfonium ion π complexes.	17
Table S11. Binding energies (BE in kcal/mol) and NPA charge transfer (CT) of ammonium ion (N),	
phosphoniumion (P), hydronium ion (O), sulfonium ion (S) and CO ₂ complexes computed at M06-2X/6-	18
311++G(d,p)//M06-2X/6-31G(d) level of theory.	
Figure S1. Molecular topological graphs obtained from QTAIM analysis for $CO_2 \cdots \pi$ complexes computed	10
at M06-2X/6-311++ $G(d,p)//M06-2X/6-31G(d)$ level of theory.	19
Figure S2. Molecular topological graphs obtained from QTAIM analysis for ammonium ion π complexes	20
computed at M06-2X/6-311++ $G(d,p)//M06-2X/6-31G(d)$ level of theory.	20
Figure S3. Molecular topological graphs obtained from QTAIM analysis for phosphonium ion π	01
complexes computed at M06-2X/6-311++ $G(d,p)$ //M06-2X/6-31G(d) level of theory.	21
Figure S4. Molecular topological graphs obtained from QTAIM analysis for hydronium ion π complexes	22
computed at M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) level of theory.	22
Figure S5. Molecular topological graphs obtained from QTAIM analysis for sulfonium ion π complexes	22
computed at M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) level of theory.	25
Figure S6. Variation of binding energies (BE in kcal/mol) and NPA charge transfer (in a.u) of	~ /
phosphonium ion, hydronium ion and sulfonium ion complexes computed at M06-2X/6- 211 $\times C(1-x)/M06/2X/6$	24
511++G(a,p)/(NUO-2A/O-5)G(a) level of theory. Figure \$7 Contribution of various factors towards the total binding energy as calculated at the MO6 2V/6	
31G(d) level using the LMO-EDA approach for phosphonium ion, hydronium ion and sulfonium ion	25
complexes.	

Complex	Interaction	ρ(r)	$\nabla^2 \rho(\mathbf{r})$	G(r)	V(r)	H(r)	-G(r)/V(r)	Type of Interaction
BC	1	0.0061	0.0052	0.0044	-0.0036	0.0008	1.2172	$(B)C_1 \cdots O(CO_2)$
	2	0.0081	0.0071	0.0057	-0.0042	0.0014	1.3402	$(B)C_4 \cdots O(CO_2)$
RC	1	0.0188	0.0166	0.0153	-0.0139	0.0014	1.0973	$(R)N\cdots C(CO_2)$
QC	1	0.0081	0.0072	0.0057	-0.0043	0.0014	1.3376	$(Q)C_3 \cdots O(CO_2)$
UC	1	0.0069	0.0061	0.0052	-0.0043	0.0009	1.2141	$(U)P-H\cdotsO(CO_2)$
	2	0.0087	0.0082	0.0066	-0.0049	0.0016	1.3323	$(U)C_4$ - C_5 ···O(CO ₂)
ZC	1	0.0078	0.0070	0.0063	-0.0055	0.0007	1.1343	$(Z)N\cdots O(CO_2)$
	2	0.0090	0.0080	0.0065	-0.0050	0.0015	1.2971	$(Z)C_4$ - C_5 ···O(CO ₂)
FC	1	0.0148	0.0158	0.0140	-0.0122	0.0018	1.1478	$(F)O\cdots C(CO_2)$
ТС	1	0.0066	0.0062	0.0053	-0.0044	0.0009	1.2011	$(T)S\cdots O(CO_2)$
N0C	1	0.0268	0.0299	0.0266	-0.0232	0.0033	1.1436	$(N0)H\cdotsO(CO_2)$
N1C	1	0.0232	0.0267	0.0229	-0.0190	0.0038	1.2019	$(N1)H\cdots O(CO_2)$
N2C	1	0.0203	0.0235	0.0197	-0.0159	0.0038	1.2386	$(N2)H\cdots O(CO_2)$
N3C	1	0.0189	0.0217	0.0181	-0.0145	0.0036	1.2453	$(N3)H\cdots O(CO_2)$
N4C	1	0.0092	0.0084	0.0071	-0.0058	0.0013	1.2273	$(N4)C-H\cdots O(CO_2)$
	2	0.0091	0.0083	0.0070	-0.0057	0.0013	1.2265	$(N4)C-H\cdots O(CO_2)$
	3	0.0091	0.0083	0.0070	-0.0057	0.0013	1.2266	$(N4)C-H\cdots O(CO_2)$
POC	1	0.0139	0.0134	0.0120	-0.0105	0.0015	1.1386	(P0)P…O(CO ₂)
P1C	1	0.0119	0.0116	0.0103	-0.0089	0.0014	1.1553	$(P1)P\cdots O(CO_2)$
	2	0.0093	0.0089	0.0075	-0.0060	0.0015	1.2403	$(P1)C-H\cdots O(CO_2)$
P2C	1	0.0102	0.0102	0.0087	-0.0072	0.0015	1.2067	$(P2)P-H\cdotsO(CO_2)$
	2	0.0085	0.0079	0.0067	-0.0055	0.0012	1.2244	$(P2)C-H\cdots O(CO_2)$
	3	0.0086	0.0080	0.0067	-0.0055	0.0012	1.2243	$(P2)C-H\cdots O(CO_2)$
P3C	1	0.0091	0.0091	0.0077	-0.0063	0.0014	1.2224	$(P3)P-H\cdotsO(CO_2)$
	2	0.0088	0.0081	0.0068	-0.0056	0.0012	1.2197	$(P3)C-H\cdots O(CO_2)$
	3	0.0087	0.0080	0.0068	-0.0056	0.0012	1.2197	$(P3)C-H\cdots O(CO_2)$
P4C	1	0.0088	0.0079	0.0067	-0.0055	0.0012	1.2146	$(P4)C-H\cdots O(CO_2)$
	2	0.0089	0.0079	0.0067	-0.0055	0.0012	1.2153	$(P4)C-H\cdots O(CO_2)$
	3	0.0090	0.0080	0.0068	-0.0056	0.0012	1.2153	$(P4)C-H\cdots O(CO_2)$
O0C	1	0.0560	0.0400	0.0508	-0.0616	-0.0108	0.8253	$(O0)H\cdots O(CO_2)$
01C	1	0.0412	0.0383	0.0402	-0.0420	-0.0019	0.9550	$(O1)H\cdots O(CO_2)$
O2C	1	0.0361	0.0367	0.0362	-0.0357	0.0005	1.0129	$(O2)H\cdots(CO_2)$
O3C	1	0.0096	0.0087	0.0074	-0.0060	0.0013	1.2241	$(O3)H\cdots O(CO_2)$
	2	0.0096	0.0087	0.0074	-0.0060	0.0013	1.2235	(O3)H ···O(CO ₂)
	3	0.0095	0.0087	0.0074	-0.0060	0.0013	1.2241	(O3)H ···O(CO ₂)
SOC	1	0.0272	0.0292	0.0255	-0.0217	0.0038	1.1736	$(S0)H\cdotsO(CO_2)$
S1C	1	0.0134	0.0144	0.0124	-0.0104	0.0020	1.1922	(S1)S…O(CO ₂)
	2	0.0100	0.0098	0.0082	-0.0066	0.0016	1.2420	$(S1)C-H\cdots O(CO_2)$

Table S1. Calculated topological properties at the (3,-1) critical points of various $CO_2 \cdots \pi$ complexes, obtained from M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) level of theory. All values are in au.

S2C	1	0.0141	0.0141	0.0119	-0.0096	0.0023	1.2352	$(S2)S-H\cdots O(CO_2)$
	2	0.0082	0.0076	0.0065	-0.0053	0.0011	1.2140	$(S2)C-H\cdots O(CO_2)$
	3	0.0082	0.0076	0.0065	-0.0053	0.0011	1.2141	$(S2)C-H\cdots O(CO_2)$
S3C	1	0.0099	0.0098	0.0086	-0.0073	0.0012	1.1646	(S3)S…O(CO ₂)
	2	0.0099	0.0094	0.0079	-0.0064	0.0015	1.2373	$(S3)C-H\cdots O(CO_2)$
	3	0.0099	0.0094	0.0079	-0.0064	0.0015	1.2375	$(S3)C-H\cdots O(CO_2)$

Table S2. Calculated topological properties at the (3,-1) critical points of various ammonium ion… π complexes obtained from M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) level of theory. All values are in au.

Complex	Interaction	ρ(r)	$\nabla^2 \rho(\mathbf{r})$	G(r)	V(r)	H(r)	-G(r)/V(r)	Type of Interaction
BN0	1	0.0146	0.0113	0.0093	-0.0074	0.0019	1.2572	$(N0)N-H\cdots C(B)$
	2	0.0146	0.0112	0.0093	-0.0074	0.0019	1.2586	$(N0)N-H\cdots C(B)$
BN1	1	0.0138	0.0106	0.0089	-0.0072	0.0017	1.2428	$(N1)N-H\cdots C(B)$
	2	0.0142	0.0109	0.0091	-0.0073	0.0018	1.2466	$(N1)N-H\cdots C(B)$
BN2	1	0.0141	0.0108	0.0091	-0.0073	0.0017	1.2385	$(N2)N-H\cdots C(B)$
	2	0.0141	0.0108	0.0091	-0.0073	0.0017	1.2385	$(N2)N-H\cdots C(B)$
BN3	1	0.0133	0.0119	0.0100	-0.0080	0.0020	1.2464	$(N3)N-H\cdots C(B)$
	2	0.0132	0.0119	0.0099	-0.0079	0.0020	1.2487	$(N3)N-H\cdots C(B)$
	3	0.0132	0.0119	0.0099	-0.0079	0.0020	1.2458	$(N3)N-H\cdots C(B)$
	4	0.0132	0.0119	0.0099	-0.0079	0.0020	1.2486	$(N4)N-H\cdots C(B)$
BN4	1	0.0071	0.0045	0.0038	-0.0031	0.0007	1.2155	$(N1)C-H\cdots C(B)$
	2	0.0090	0.0072	0.0060	-0.0047	0.0013	1.2669	$(N1)C-H\cdots C(B)$
	3	0.0073	0.0047	0.0039	-0.0032	0.0007	1.2198	$(N1)C-H\cdots C(B)$
RN1	1	0.0118	0.0094	0.0079	-0.0064	0.0015	1.2305	$(N0)N-H\cdots C(R)$
	2	0.0118	0.0094	0.0079	-0.0064	0.0015	1.2305	$(N0)N-H\cdots C(R)$
	3	0.0119	0.0095	0.0081	-0.0066	0.0015	1.2193	(N1)C-H…N(R)
RN2	1	0.0729	0.0194	0.0454	-0.0715	-0.0261	0.6354	(N2)N-H…N(R)
RN3	1	0.0658	0.0219	0.0425	-0.0632	-0.0206	0.6731	(N3)N-H…N(R)
RN4	1	0.0113	0.0083	0.0073	-0.0062	0.0011	1.1686	$(N4)C-H\cdots N(R)$
	2	0.0134	0.0102	0.0088	-0.0074	0.0014	1.1852	$(N4)C-H\cdots N(R)$
	3	0.0132	0.0100	0.0087	-0.0073	0.0014	1.1852	$(N4)C-H\cdots N(R)$
QN0	1	0.0349	0.0090	0.0144	-0.0198	-0.0054	0.7272	$(N0)N-H\cdots P(Q)$
QN1	1	0.0128	0.0100	0.0081	-0.0063	0.0018	1.2942	$(N1)N-H\cdots C(Q)$
	2	0.0130	0.0096	0.0080	-0.0064	0.0016	1.2523	$(N1)N-H\cdots C(Q)$
	3	0.0057	0.0038	0.0032	-0.0025	0.0007	1.2634	$(N1)C-H\cdots P(Q)$
QN2	1	0.0127	0.0099	0.0085	-0.0070	0.0015	1.2070	$(N2)N-H\cdots C(Q)$
QN3	1	0.0128	0.0092	0.0081	-0.0070	0.0011	1.1548	$(N3)N-H\cdots P(Q)$
QN4	1	0.0068	0.0042	0.0036	-0.0030	0.0006	1.1938	$(N4)C-H\cdots C(Q)$
	2	0.0079	0.0059	0.0080	-0.0041	0.0040	1.9710	$(N4)C-H\cdots C(Q)$
	3	0.0068	0.0041	0.0035	-0.0029	0.0006	1.2159	$(N4)C-H\cdots P(Q)$
UN0	1	0.0136	0.0097	0.0080	-0.0064	0.0017	1.2621	$(N0)N-H\cdots C(U)$
	2	0.0136	0.0097	0.0080	-0.0064	0.0017	1.2621	$(N0)N-H\cdots C(U)$
	3	0.0097	0.0087	0.0075	-0.0063	0.0012	1.1976	$(N0)N\cdots P(U)$
UN1	1	0.0130	0.0093	0.0077	-0.0061	0.0016	1.2545	$(N1)N-H\cdots C(U)$
	2	0.0130	0.0093	0.0077	-0.0061	0.0016	1.2545	$(N1)N-H\cdots C(U)$
	3	0.0068	0.0046	0.0039	-0.0031	0.0008	1.2408	$(N1)N\cdots P(U)$
UN2	1	0.0130	0.0093	0.0078	-0.0063	0.0015	1.2406	$(N0)N-H\cdots C(U)$
	2	0.0130	0.0093	0.0078	-0.0063	0.0015	1.2408	$(N0)N-H\cdots C(U)$

UN3	1	0.0152	0.0131	0.0110	-0.0089	0.0021	1.2344	$(N0)N-H\cdots C(U)$
	2	0.0152	0.0131	0.0110	-0.0089	0.0021	1.2344	$(N0)N-H\cdots C(U)$
UN4	1	0.0072	0.0049	0.0041	-0.0034	0.0008	1.2258	$(N4)C-H\cdots C(U)$
	2	0.0084	0.0058	0.0049	-0.0039	0.0009	1.2340	$(N4)C-H\cdots C(U)$
	3	0.0084	0.0048	0.0042	-0.0035	0.0007	1.1933	$(N4)C-H\cdots P(U)$
	4	0.0075	0.0055	0.0048	-0.0041	0.0007	1.1703	$(N4)C-H\cdots P(U)$
ZN0	1	0.0188	0.0136	0.0117	-0.0098	0.0019	1.1911	$(N0)N-H\cdots C(Z)$
	2	0.0167	0.0124	0.0105	-0.0086	0.0019	1.2193	$(N0)N-H\cdots C(Z)$
ZN1	1	0.0184	0.0135	0.0116	-0.0097	0.0019	1.1962	$(N1)N-H\cdots C(Z)$
	2	0.0151	0.0114	0.0096	-0.0078	0.0018	1.2251	$(N1)N-H\cdots C(Z)$
ZN2	1	0.0166	0.0124	0.0106	-0.0087	0.0019	1.2126	$(N2)N-H\cdots C(Z)$
	2	0.0166	0.0124	0.0106	-0.0087	0.0019	1.2126	$(N2)N-H\cdots C(Z)$
ZN3	1	0.0217	0.0171	0.0152	-0.0133	0.0019	1.1396	$(N3)N-H\cdots C(Z)$
NZ4	1	0.0099	0.0086	0.0071	-0.0057	0.0014	1.2526	$(N4)C-H\cdots C(Z)$
	2	0.0082	0.0055	0.0046	-0.0038	0.0009	1.2252	$(N4)C-H\cdots C(Z)$
	3	0.0087	0.0054	0.0046	-0.0039	0.0007	1.1899	$(N4)C-H\cdots C(Z)$
FN0	1	0.0183	0.0137	0.0117	-0.0097	0.0020	1.2097	$(N0)N-H\cdots C(F)$
	2	0.0131	0.0127	0.0110	-0.0092	0.0018	1.1918	$(N0)N-H\cdots O(F)$
FN1	1	0.0125	0.0094	0.0080	-0.0065	0.0014	1.2199	$(N1)N-H\cdots C(F)$
	2	0.0175	0.0128	0.0110	-0.0092	0.0018	1.1984	$(N1)N-H\cdots C(F)$
	3	0.0092	0.0077	0.0068	-0.0059	0.0009	1.1605	$(N2)C-H\cdots O(F)$
FN2	1	0.0176	0.0129	0.0111	-0.0093	0.0018	1.1970	$(N2)N-H\cdots C_5(F)$
	2	0.0122	0.0091	0.0078	-0.0065	0.0013	1.2035	$(N2)N-H\cdots C_2-C_3(F)$
	3	0.0082	0.0069	0.0061	-0.0052	0.0009	1.1638	$(N3)C-H\cdots O(F)$
FN3	1	0.0172	0.0142	0.0121	-0.0100	0.0021	1.2115	$(N3)N-H\cdots C_3(F)$
	2	0.0077	0.0074	0.0063	-0.0053	0.0010	1.1937	(N3)C…O(F)
FN4	1	0.0085	0.0052	0.0044	-0.0036	0.0008	1.2264	$(N4)C-H\cdots C(F)$
	2	0.0085	0.0052	0.0044	-0.0036	0.0008	1.2264	$(N4)C-H\cdots C(F)$
	3	0.0121	0.0104	0.0090	-0.0076	0.0014	1.1813	$(N4)C-H\cdots O(F)$
TN0	1	0.0152	0.0113	0.0094	-0.0076	0.0018	1.2392	$(N0)N-H\cdots C_2(T)$
	2	0.0152	0.0113	0.0094	-0.0076	0.0018	1.2392	$(N0)N-H\cdots C_5(T)$
TN1	1	0.0147	0.0110	0.0092	-0.0075	0.0017	1.2314	$(N1)N-H\cdots C_2(T)$
	2	0.0147	0.0110	0.0092	-0.0075	0.0017	1.2313	$(N1)N-H\cdots C_5(T)$
TN2	1	0.0144	0.0108	0.0091	-0.0074	0.0017	1.2273	$(N2)N-H\cdots C_2(T)$
TD 10	2	0.0144	0.0108	0.0091	-0.0074	0.0017	1.2270	$(N2)N-H\cdots C_5(T)$
TN3	1	0.0156	0.0139	0.0117	-0.0095	0.0022	1.2337	$(N3)N-H\cdots C_3(T)$
	2	0.0156	0.0139	0.0117	-0.0095	0.0022	1.2348	$(N3)N-H\cdots C_4(T)$
	3	0.0122	0.0119	0.0102	-0.0086	0.0017	1.1939	$(N3)N-H\cdots S(T)$
TN4	1	0.0070	0.0041	0.0036	-0.0030	0.0006	1.1824	$(N4)C-H\cdots C_4(T)$
	2	0.0096	0.0075	0.0062	-0.0048	0.0013	1.2779	$(N4)C-H\cdots C_3(T)$
	3	0.0071	0.0047	0.0040	-0.0032	0.0007	1.2289	$(N4)C-H\cdots C_2(T)$

Complex	Interaction	ρ(r)	$\nabla^2 \rho(\mathbf{r})$	G(r)	V(r)	H(r)	-G(r)/V(r)	Type of Interaction
BP0	1	0.0145	0.0111	0.0091	-0.0072	0.0020	1.2752	(P0)H…C(B)
	2	0.0110	0.0081	0.0070	-0.0060	0.0011	1.1801	(P0)P…C(B)
BP1	1	0.0136	0.0106	0.0087	-0.0068	0.0019	1.2841	(P1)H…C(B)
	2	0.0098	0.0078	0.0067	-0.0055	0.0012	1.2134	$(P1)P-H\cdots C(B)$
BP2	1	0.0125	0.0098	0.0080	-0.0063	0.0017	1.2737	$(P2)P-H\cdots C_1(B)$
	2	0.0093	0.0077	0.0065	-0.0053	0.0012	1.2190	$(P2)P-H\cdots C_4(B)$
	3	0.0064	0.0047	0.0039	-0.0031	0.0008	1.2654	$(P2)C-H\cdots C_2(B)$
	4	0.0064	0.0047	0.0039	-0.0031	0.0008	1.2648	$(P2)C-H\cdots C_6(B)$
BP3	1	0.0119	0.0093	0.0077	-0.0061	0.0016	1.2662	$(P3)P-H\cdots C_1(B)$
	2	0.0091	0.0076	0.0064	-0.0053	0.0011	1.2176	$(P3)P-H\cdots C_4(B)$
	3	0.0061	0.0044	0.0036	-0.0029	0.0007	1.2579	$(P3)C-H\cdots C_2(B)$
	4	0.0061	0.0044	0.0036	-0.0029	0.0007	1.2579	$(P3)C-H\cdots C_6(B)$
BP4	1	0.0070	0.0047	0.0039	-0.0032	0.0008	1.2458	$(P4)C-H\cdots C1(B)$
	2	0.0069	0.0046	0.0039	-0.0031	0.0008	1.2419	$(P4)C-H\cdots C_3(B)$
	3	0.0089	0.0070	0.0057	-0.0045	0.0012	1.2766	$(P4)C-H\cdots C_5(B)$
RP0	1	0.0597	0.0129	0.0301	-0.0473	-0.0172	0.6361	(P0)P…N(R)
RP1	1	0.0499	0.0159	0.0260	-0.0360	-0.0101	0.7200	$(P1)P\cdots N(R)$
RP2	1	0.0186	0.0129	0.0124	-0.0119	0.0005	1.0429	$(P2)P\cdots N(R)$
RP3	1	0.0143	0.0106	0.0098	-0.0090	0.0008	1.0934	$(P3)P-H\cdots N(R)$
	2	0.0115	0.0092	0.0080	-0.0068	0.0012	1.1827	(P3)C-H…N(R)
	3	0.0115	0.0092	0.0080	-0.0068	0.0012	1.1827	(P3)C-H …N(R)
RP4	1	0.0098	0.0073	0.0064	-0.0055	0.0009	1.1659	$(P4)C-H\cdots N(R)$
	2	0.0123	0.0094	0.0081	-0.0068	0.0013	1.1893	$(P4)C-H\cdots N(R)$
	3	0.0114	0.0087	0.0075	-0.0064	0.0012	1.1848	$(P4)C-H\cdots N(R)$
QP0	1	0.0095	0.0064	0.0055	-0.0047	0.0009	1.1831	$(P0)P-H\cdots P-C_2(Q)$
	2	0.0126	0.0096	0.0078	-0.0059	0.0018	1.3080	$(P0)H\cdots C_3(Q)$
QP1	1	0.0116	0.0089	0.0073	-0.0056	0.0017	1.3009	$(P1)H\cdots C_3(Q)$
	2	0.0086	0.0062	0.0053	-0.0044	0.0009	1.2037	$(P1)P-H\cdots P(Q)$
	3	0.0068	0.0044	0.0037	-0.0030	0.0007	1.2421	$(P1)C-H\cdots P(Q)$
QP2	1	0.0086	0.0086	0.0055	-0.0046	0.0009	1.1913	$(P2)P-H\cdots P(Q)$
	2	0.0111	0.0084	0.0069	-0.0055	0.0015	1.2697	$(P2)H\cdots C_4(R)$
	3	0.0060	0.0040	0.0033	-0.0026	0.0007	1.2680	$(P3)C-H\cdots P(Q)$
	4	0.0060	0.0040	0.0033	-0.0026	0.0007	1.2680	$(P3)C-H\cdots P(Q)$
QP3	1	0.0084	0.0063	0.0054	-0.0046	0.0009	1.1873	$(P3)H\cdots P(Q)$
	2	0.0104	0.0078	0.0065	-0.0052	0.0013	1.2538	$(P3)H\cdots C_4(Q)$
	3	0.0058	0.0038	0.0032	-0.0025	0.0006	1.2571	$(P3)C-H\cdots P(R)$
_	4	0.0057	0.0039	0.0032	-0.0025	0.0007	1.2720	$(P3)C-H\cdots C_2(P)$
QP4	1	0.0074	0.0044	0.0038	-0.0031	0.0007	1.2092	$(P4)C-H\cdots P(Q)$
	2	0.0059	0.0037	0.0031	-0.0025	0.006	1.2385	$(P4)C-H\cdots C_2(Q)$
	3	0.0075	0.0055	0.0046	-0.0038	0.008	1.2149	$(P4)C-H\cdots C_6(Q)$

Table S3. Calculated topological properties at the (3,-1) critical points of various phosphonium ion… π complexes obtained from M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) level of theory. All values are in au.

UP0	1	0.0132	0.0090	0.0080	-0.0070	0.0010	1.1456	$(P0)P-H\cdots C_2(U)$
	2	0.0182	0.0126	0.0108	-0.0089	0.0019	1.2127	$(P0)H\cdots C_5(U)$
UP1	1	0.0118	0.0082	0.0075	-0.0067	0.0007	1.1109	$(P1)P-H\cdots P(U)$
	2	0.0120	0.0084	0.0070	-0.0055	0.0014	1.2594	$(P1)H \cdots C_2 - C_3(U)$
UP2	1	0.0109	0.0080	0.0072	-0.0064	0.0008	1.1243	$(P2)P-H\cdots P(U)$
	2	0.0110	0.0080	0.0067	-0.0053	0.0013	1.2466	$(P2)H\cdots C_3(U)$
	3	0.0068	0.0050	0.0042	-0.0033	0.0009	1.2576	$(P2)C-H\cdots P(U)$
UP3	1	0.0133	0.0097	0.0081	-0.0065	0.0016	1.2479	$(P3)P-H\cdots C_2(U)$
	2	0.0097	0.0078	0.0066	-0.0055	0.0012	1.2114	$(P3)P-H\cdots C_5(U)$
	3	0.0049	0.0040	0.0032	-0.0024	0.0008	1.3321	$(P3)C\cdots H-P(U)$
	4	0.0063	0.0044	0.0036	-0.0029	0.0007	1.2486	$(P3)C-H\cdots C_3(U)$
	5	0.0063	0.0042	0.0036	-0.0030	0.0006	1.1915	$(P3)C-H\cdots C_4(U)$
UP4	1	0.0071	0.0042	0.0035	-0.0029	0.0006	1.2130	$(P4)C-H\cdots P(U)$
	2	0.0074	0.0057	0.0050	-0.0042	0.0007	1.1755	$(P4)C-H\cdots P(U)$
	3	0.0086	0.0061	0.0051	-0.0040	0.010	1.2521	$(P4)C-H\cdots C_2-C_3(Z)$
	4	0.0073	0.0046	0.0039	-0.0033	0.0006	1.1938	$(P4)C-H\cdots P(U)$
ZP0	1	0.0213	0.0153	0.0134	-0.0114	0.0019	1.1686	$(P0)P\cdots C_2(Z)$
	2	0.0145	0.0105	0.0093	-0.0081	0.0012	1.1505	$(P0)H\cdots C_5(Z)$
ZP1	1	0.0176	0.0136	0.0117	-0.0098	0.0019	1.1959	$(P1)P-H\cdots C_2(Z)$
	2	0.0123	0.0098	0.0085	-0.0073	0.0013	1.1729	$(P1)P-H\cdots C_4(Z)$
ZP2	1	0.0138	0.0128	0.0108	-0.0087	0.0021	1.2399	$(P2)H\cdots N(Z)$
	2	0.0114	0.0096	0.0082	-0.0068	0.0014	1.2011	$(P2)H\cdots C_3(Z)$
ZP3	1	0.0129	0.0119	0.0100	-0.0081	0.0019	1.2326	(P3)H…N(Z)
	2	0.0128	0.0112	0.0096	-0.0079	0.0017	1.2115	$(P3)P-H\cdots C_2(Z)$
	3	0.0072	0.0055	0.0046	-0.0036	0.0009	1.2584	$(P3)C-H\cdots C_3-C_4(Z)$
ZP4	1	0.0105	0.0088	0.0073	-0.0059	0.0015	1.2537	$(P4)C-H\cdots C_2(Z)$
FP0	1	0.0169	0.0159	0.0137	-0.0115	0.0022	1.1885	(P0)P-H…O(F)
FP1	1	0.0160	0.0121	0.0102	-0.0083	0.0019	1.2329	$(P1)P-H\cdots C_2(F)$
	2	0.0118	0.0092	0.0081	-0.0070	0.0011	1.1562	$(P1)P\cdots C_5(F)$
FP2	1	0.0127	0.0123	0.0109	-0.0095	0.0014	1.1445	$(P2)H\cdots O(F)$
	2	0.0119	0.0107	0.0092	-0.0077	0.0015	1.1959	$(P2)H\cdots C_2(F)$
FP3	1	0.0118	0.0115	0.0102	-0.0088	0.0013	1.1495	(P3)H…O(F)
	2	0.0113	0.0100	0.0086	-0.0072	0.0014	1.1958	$(P3)H\cdots C_2(F)$
	3	0.0113	0.0100	0.0086	-0.0072	0.0014	1.1958	$(P3)H\cdots C_5(F)$
FP4	1	0.0097	0.0094	0.0082	-0.0071	0.0012	1.1664	$(P4)C-H\cdots O(F)$
	2	0.0106	0.0092	0.0080	-0.0068	0.0012	1.1804	$(P4)C-H\cdots O(F)$
	3	0.0060	0.0049	0.0043	-0.0037	0.0006	1.1677	$(P4)C-H\cdots O(F)$
	4	0.0093	0.0086	0.0073	-0.0060	0.0013	1.2223	$(P4)C-H\cdots C_2(F)$
	5	0.0098	0.0085	0.0071	-0.0058	0.0014	1.2380	$(P4)C-H\cdots C_5(F)$
TP0	1	0.0163	0.0121	0.0100	-0.0079	0.0021	1.2658	$(P0)P\cdots C_2 - C_3(T)$
	2	0.0117	0.0090	0.0077	-0.0064	0.0013	1.2001	$(P0)H \cdots C_4 - C_5(T)$
TP1	1	0.0147	0.0111	0.0091	-0.0072	0.0020	1.2728	$(P1)H\cdots C_2(T)$
TP2	1	0.0137	0.0105	0.0087	-0.0068	0.0018	1.2707	$(P2)H\cdots C_2(F)$

TP3	1	0.0128	0.0098	0.0081	-0.0064	0.0017	1.2666	$(P3)H\cdots C_2(T)$
	2	0.0060	0.0043	0.0036	-0.0029	0.0007	1.2444	$(P3)H\cdots C_5(T)$
TP4	1	0.0070	0.0050	0.0041	-0.0033	0.0008	1.2576	$(P4)C-H\cdots S(T)$
	2	0.0068	0.0041	0.0036	-0.0030	0.0006	1.1930	$(P4)C-H\cdots C_2(T)$
	3	0.0098	0.0075	0.0061	-0.0047	0.0014	1.2921	$(P4)C-H\cdots C_4(T)$

Complex	Interaction	ρ(r)	$\nabla^2 \rho(\mathbf{r})$	G(r)	V(r)	H(r)	-G(r)/V(r)	Type of Interaction
BO0	1	0.0145	0.0110	0.0095	-0.0079	0.0015	1.1951	$(O0)H\cdots C_1-C_2(B)$
	2	0.0145	0.0110	0.0095	-0.0079	0.0015	1.1951	$(O0)H\cdots C_3-C_4(B)$
	3	0.0145	0.0110	0.0095	-0.0079	0.0015	1.1951	$(O0)H\cdots C_5-C_6(B)$
BO1	1	0.0180	0.0131	0.0114	-0.0097	0.0017	1.1746	$(O1)H\cdots C_1(B)$
	2	0.0190	0.0133	0.0119	-0.0105	0.0014	1.1335	$(O1)H\cdots C_3(B)$
BO2	1	0.0259	0.0161	0.0157	-0.0152	0.0004	1.0291	$(O2)H\cdots C_1-C_2(B)$
BO3	1	0.0078	0.0068	0.0060	-0.0052	0.0008	1.1502	$(O3)O\cdots C_1(B)$
	2	0.0077	0.0068	0.0060	-0.0053	0.0007	1.1496	$(O3)O\cdots C_5(B)$
	3	0.0078	0.0067	0.0059	-0.0052	0.0008	1.1392	$(O3)O\cdots C_2(B)$
	4	0.0070	0.0064	0.0052	-0.0041	0.0007	1.2884	$(O3)C\cdots C_1(B)$
	5	0.0078	0.0068	0.0060	-0.0052	0.0008	1.1503	(O3)O…C ₃ (B)
	6	0.0070	0.0064	0.0052	-0.0040	0.0012	1.2887	$(O3)C_2 \cdots C_3(B)$
	7	0.0077	0.0066	0.0059	-0.0052	0.0012	1.1392	$(O3)O\cdots C_4(B)$
	8	0.0070	0.0063	0.0052	-0.0040	0.0012	1.2889	$(O3)C_4 \cdots C_5(B)$
RO0	1	0.0177	0.0128	0.0111	-0.0094	0.0017	1.1802	$(O0)H\cdots C_2-C_3(R)$
	2	0.0177	0.0128	0.0111	-0.0094	0.0017	1.1802	$(O0)H\cdots C_5-C_6(R)$
RO1	1	0.0102	0.0080	0.0068	-0.0057	0.0012	1.2041	$(O1)C-H\cdots N(R)$
	2	0.0159	0.0120	0.0103	-0.0085	0.0017	1.2050	$(O1)H\cdots C_2(R)$
	3	0.0159	0.0120	0.0103	-0.0085	0.0017	1.2050	$(O1)H\cdots C_6(R)$
RO2	1	0.0223	0.0155	0.0145	-0.0134	0.0010	1.0760	$(O2)H\cdots C_2(R)$
	2	0.0094	0.0076	0.0065	-0.0054	0.0011	1.2044	$(O2)C-H\cdots N(R)$
	3	0.0062	-0.0046	0.0038	-0.0030	0.0008	1.2699	O2(CH3)HC6(R)
RO3	1	0.0116	0.0087	0.0076	-0.0065	0.0011	1.1682	$(O3)C-H\cdots N(R)$
	2	0.0136	0.0105	0.0089	-0.0075	0.0014	1.1841	(O3)C-H…N(R)
	3	0.0134	0.0103	0.0089	-0.0075	0.0014	1.1841	(O3)C-H…N(R)
QO0	1	0.0191	0.0126	0.0113	-0.0100	0.0013	1.1268	$(O0)H\cdots C_2(Q)$
	2	0.0191	0.0126	0.0113	-0.0100	0.0013	1.1268	$(OO)H\cdots C_6(Q)$
Q01	1	0.0672	-0.0055	0.0208	-0.0471	-0.0263	0.4415	$(O1)H\cdots P(Q)$
QO2	1	0.0580	0.0010	0.0203	-0.0396	-0.0193	0.5124	$(O2)H\cdots P(Q)$
QO3	1	0.0070	0.0042	0.0036	-0.0030	0.0006	1.2037	$(O3)C-H\cdots P(Q)$
	2	0.0064	0.0038	0.0032	-0.0027	0.0006	1.2049	$(O3)C-H\cdots P(Q)$
	3	0.0084	0.0062	0.0052	-0.0043	0.0010	1.2274	$(O3)C-H\cdots C_2(Q)$
UO0	1	0.0107	0.0096	0.0087	-0.0078	0.0009	1.1145	$(OO)O\cdots P(U)$
	2	0.0208	0.0129	0.0118	-0.0107	0.0011	1.0986	$(O0)H\cdots C_2-C_3(U)$
	3	0.0208	0.0129	0.0118	-0.0107	0.0011	1.0985	$(O0)H\cdots C_4-C_5(U)$
U01	1	0.0362	0.0145	0.0194	-0.0243	-0.0049	0.7985	$(O1)H\cdots C_2(U)$
	2	0.0147	0.0107	0.0094	-0.0080	0.0014	1.1709	$(O1)H\cdots C_5(U)$
UO2	1	0.0647	-0.0036	0.0204	-0.0444	-0.0240	0.4596	$(O2)H\cdots P(U)$
UO3	1	0.0106	0.0083	0.0079	-0.0075	0.0004	1.0495	(O3)O…P(U)
	2	0.0068	0.0054	0.0045	-0.0035	0.0009	1.2625	$(O3)C-H\cdots C_3(U)$

Table S4. Calculated topological properties at the (3,-1) critical points of various hydronium ion… π complexes obtained from M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) level of theory. All values are in au.

	3	0.0068	0.0054	0.0045	-0.0035	0.0009	1.2622	$(O3)C-H\cdots C_4(U)$
	4	0.0061	0.0048	0.0040	-0.0032	0.0008	1.2396	$(O3)C-H\cdots C_2(U)$
	5	0.0061	0.0048	0.0040	-0.0032	0.0008	1.2396	$(O3)C-H\cdots C_5(U)$
Z01	1	0.0638	0.0037	0.0285	-0.0533	-0.0248	0.5350	$(O1)H\cdots C_3(Z)$
ZO2	1	0.0510	0.0102	0.0254	-0.0406	-0.0152	0.6256	$(O2)H\cdots C_4(Z)$
	2	0.0054	0.0040	0.0034	-0.0028	0.0006	1.2157	$(O2)C-H\cdots C_2(Z)$
ZO3	1	0.0109	0.0093	0.0077	-0.0061	0.0016	1.2610	$(O3)C-H\cdots C_2(Z)$
	2	0.0078	0.0051	0.0044	-0.0036	0.0008	1.2158	$(O3)C-H\cdots C_3(Z)$
	3	0.0109	0.0093	0.0077	-0.0061	0.0016	1.2610	$(O3)C-H\cdots C_4(Z)$
FO0	1	0.1752	-0.1199	0.0865	-0.2929	-0.2064	0.2953	(O0)H…O(F)
FO1	1	0.1047	0.0257	0.0777	-0.1298	-0.0521	0.5988	(O1)H…O(F)
FO2	1	0.0838	0.0370	0.0672	-0.0975	-0.0303	0.6894	(O2)H…O(F)
FO3	1	0.0111	0.0113	0.0103	-0.0094	0.0009	1.1008	(O3)O…O(F)
	2	0.0088	0.0077	0.0070	-0.0064	0.0009	1.1034	(O3)O…S(T)
	3	0.0064	0.0052	0.0043	-0.0034	0.0009	1.2561	$(O3)C-H\cdots C_3(F)$
	4	0.0082	0.0071	0.0063	-0.0055	0.0007	1.1357	$(O3)O\cdots C_2(T)$
	5	0.0066	0.0052	0.0043	-0.0034	0.0008	1.2506	$(O3)C-H\cdots C_4(F)$
	6	0.0081	0.0070	0.0062	-0.0055	0.0007	1.1354	$(O3)O\cdots C_3(T)$
	7	0.0065	0.0052	0.0044	-0.0035	0.0008	1.2417	$(O3)C-H\cdots C_2(T)$
	8	0.0066	0.0056	0.0046	-0.0036	0.0009	1.2479	$(O3)C-H\cdots C_3(T)$
TO0	1	0.0491	0.0113	0.0232	-0.0350	-0.0118	0.6619	$(OO)H\cdots C_2-C_3(T)$
TO1	1	0.0200	0.0137	0.0123	-0.0108	0.0014	1.1327	$(O1)H\cdots C_2(T)$
	2	0.0200	0.0137	0.0123	-0.0108	0.0014	1.1327	$(O1)H\cdots C_5(T)$
TO2	1	0.0341	0.0155	0.0187	-0.0218	-0.0031	0.8560	$(O2)H\cdots C_3(T)$
	2	0.0065	0.0050	0.0041	-0.0033	0.0009	1.2636	$(O2)C-H\cdots C_4(T)$
TO3	1	0.0066	0.0054	0.0044	-0.0035	0.0009	1.2679	$(O3)C-H\cdots C_4(T)$
	2	0.0067	0.0055	0.0046	-0.0036	0.0010	1.2761	$(O3)C-H\cdots C_5(T)$

Complex	Interaction	ρ(r)	$\nabla^2 \rho(\mathbf{r})$	G(r)	V(r)	H(r)	-G(r)/V(r)	Type of Interaction
BS0	1	0.0154	0.0107	0.0090	-0.0072	0.0017	1.2411	$(S0)H\cdots C_1(B)$
	2	0.0188	0.0124	0.0108	-0.0092	0.0016	1.1781	$(S0)H\cdots C_4(B)$
BS1	1	0.0154	0.0106	0.0090	-0.0074	0.0016	1.2188	$(S1)H\cdots C_1(B)$
	2	0.0154	0.0106	0.0090	-0.0074	0.0016	1.2191	$(S1)H\cdots C_4(B)$
	3	0.0055	0.0037	0.0031	-0.0026	0.0006	1.2217	$(S1)C-H\cdots C_2-C_3(B)$
BS2	1	0.0186	0.0139	0.0116	-0.0092	0.0024	1.2553	$(S2)H\cdots C_1(B)$
BS3	1	0.0083	0.0058	0.0050	-0.0041	0.0009	1.2157	$(S3)S\cdots C_1(B)$
	2	0.0072	0.0048	0.0040	-0.0033	0.0008	1.2313	$(S3)C-H\cdots C_1(B)$
	3	0.0092	0.0073	0.0060	-0.0046	0.0014	1.2955	$(S3)C-H\cdots C_3(B)$
RS0	1	0.0372	0.0234	0.0245	-0.0255	-0.0010	0.9595	$(S0)S\cdots N(R)$
RS1	1	0.0276	0.0195	0.0192	-0.0188	0.0004	1.0187	$(S1)S\cdots N(R)$
RS2	1	0.0215	0.0154	0.0148	-0.0143	0.0005	1.0369	$(S2)S\cdots N(R)$
	2	0.0131	0.0111	0.0096	-0.0081	0.0015	1.1864	$(S2)C-H\cdots N(R)$
	3	0.0131	0.0111	0.0096	-0.0081	0.0015	1.1864	$(S2)C-H\cdots N(R)$
RS3	1	0.0174	0.0128	0.0122	-0.0116	0.0006	1.0510	$(S3)S\cdots N(R)$
	2	0.0130	0.0106	0.0092	-0.0078	0.0014	1.1834	$(S3)C-H\cdots N(R)$
	3	0.0130	0.0106	0.0092	-0.0077	0.0014	1.1833	(S3)C-H…N(R)
QS0	1	0.0087	0.0076	0.0062	-0.0048	0.0014	1.3000	$(S0)H\cdots P(Q)$
	2	0.0266	0.0102	0.0114	-0.0126	-0.0012	0.9045	$(S0)S\cdots C_4(Q)$
QS1	1	0.0202	0.0121	0.0107	-0.0093	0.0014	1.1502	$(S1)S-H\cdots C_2(Q)$
	2	0.0063	0.0044	0.0037	-0.0030	0.0007	1.2256	$(S1)C-H \cdots C_4(Q)$
QS2	1	0.0417	0.0085	0.0154	-0.0224	-0.0069	0.6900	$(S2)H\cdots P(Q)$
QS3	1	0.0074	0.0049	0.0042	-0.0034	0.0008	1.2199	$(S3)S\cdots P(Q)$
	2	0.0074	0.0046	0.0039	-0.0032	0.0007	1.2160	$(S3)C-H\cdots P(Q)$
	3	0.0082	0.0059	0.0050	-0.0040	0.0010	1.2401	$(S3)C-H\cdots C_2(Q)$
US0	1	0.0102	0.0088	0.0076	-0.0064	0.0012	1.1877	$(S0)S\cdots P(U)$
	2	0.0162	0.0102	0.0086	-0.0070	0.0016	1.2238	$(S0)H\cdots C_2(U)$
	3	0.0162	0.0101	0.0086	-0.0070	0.0016	1.2241	$(S0)H\cdots C_5(U)$
US1	1	0.0146	0.0094	0.0079	-0.0065	0.0015	1.2243	$(S1)H\cdots C_2(Q)$
	2	0.0146	0.0094	0.0079	-0.0065	0.0015	1.2243	$(S1)H\cdots C_5(Q)$
US2	1	0.0522	0.0049	0.0173	-0.0298	-0.0125	0.5818	$(S2)H\cdots P(U)$
US3	1	0.0132	0.0083	0.0080	-0.0077	0.0003	1.0389	$(S3)S\cdots P(U)$
ZS1	1	0.0455	0.0146	0.0225	-0.0304	-0.0079	0.7407	$(S1)H\cdots C_3(U)$
ZS2	1	0.0316	0.0171	0.0176	-0.0182	-0.0006	0.9689	$(S2)H\cdots C_3(Z)$
ZS3	1	0.0104	0.0094	0.0079	-0.0064	0.0015	1.2312	(S3)C-H…N(Z)
	2	0.0094	0.0067	0.0058	-0.0049	0.0009	1.1935	$(S3)S\cdots C_3(Z)$
	3	0.0079	0.0052	0.0045	-0.0037	0.0008	1.2016	$(S3)C-H\cdots C_3(Z)$
FS0	1	0.0548	0.0110	0.0247	-0.0384	-0.0137	0.6431	(S0)S…C2(Z)
FS1	1	0.0117	0.0078	0.0068	-0.0059	0.0010	1.1632	$(S1)S\cdots C_2-C_3(F)$
	2	0.0127	0.0104	0.0086	-0.0067	0.0018	1.2692	$(S1)C-H\cdots C_2(F)$

Table S5. Calculated topological properties at the (3,-1) critical points of various sulfonium ion… π complexes obtained from M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) level of theory. All values are in au.

FS2 1 0.0240 0.0156 0.0141 -0.0127 0.0014 1.1139 (S2)H…C2(F) 2 0.0115 0.0104 0.0088 -0.0072 0.0016 1.2244 (S2)H…C2(F) FS3 1 0.0099 0.0086 0.0079 -0.0072 0.0007 1.0996 (S3)S…O(F) 2 0.0108 0.0093 0.0081 -0.0069 0.0012 1.1752 (S3)C-H…O(F) 3 0.0114 0.0094 0.0078 -0.0063 0.0015 1.2443 (S3)C-H…C2(F) TS0 1 0.0131 0.0087 0.0074 -0.0061 0.0013 1.2159 (S0)H…C2(T) 2 0.0264 0.0144 0.0137 -0.0131 0.0066 1.0492 (S0)H…C2(T) TS1 1 0.0279 0.0161 0.0153 -0.0146 0.0008 1.0539 (S1)S-H…C2(T) TS2 1 0.0168 0.0130 0.0188 -0.0087 0.022 1.2496 (S2)H…C3(T) 3 0.0060 0.0044 0.0037 -0.0029 0.0008 1.0539 (S									
2 0.0115 0.0104 0.0088 -0.0072 0.0016 1.2244 (S2)H···C ₅ (F) FS3 1 0.0099 0.0086 0.0079 -0.0072 0.0007 1.0996 (S3)S···O(F) 2 0.0108 0.0093 0.0081 -0.0069 0.0012 1.1752 (S3)C·H···O(F) 3 0.0114 0.0094 0.0078 -0.0063 0.0015 1.2443 (S3)C·H···C ₂ (F) TS0 1 0.0131 0.0087 0.0074 -0.0061 0.0013 1.2159 (S0)H···C ₂ (T) 2 0.0264 0.0144 0.0137 -0.0131 0.0006 1.0492 (S0)H···C ₅ (T) TS1 1 0.0279 0.0161 0.0153 -0.0146 0.0008 1.0539 (S1)S·H···C ₂ (T) TS2 1 0.0168 0.0130 0.0108 -0.0022 1.2496 (S2)H···C ₃ (T) 3 0.0060 0.0044 0.0037 -0.0029 0.0008 1.2653 (S2)C·H···S(T) 3 0	FS2	1	0.0240	0.0156	0.0141	-0.0127	0.0014	1.1139	$(S2)H\cdots C_2(F)$
FS3 1 0.0099 0.0086 0.0079 -0.0072 0.0007 1.0996 (S3)S…O(F) 2 0.0108 0.0093 0.0081 -0.0069 0.0012 1.1752 (S3)C-H…O(F) 3 0.0114 0.0094 0.0078 -0.0063 0.0015 1.2443 (S3)C-H…C2(F) TS0 1 0.0131 0.0087 0.0074 -0.0061 0.0013 1.2159 (S0)H…C2(T) 2 0.0264 0.0144 0.0137 -0.0131 0.0006 1.0492 (S0)H…C2(T) TS1 1 0.0279 0.0161 0.0153 -0.0146 0.0008 1.0539 (S1)S-H…C2(T) TS2 1 0.0168 0.0130 0.0108 -0.0087 0.0022 1.2496 (S2)H…C3(T) 3 0.0060 0.0044 0.0037 -0.0029 0.0008 1.2653 (S2)C-H…S(T) 3 0.0060 0.0045 0.0036 -0.0029 0.0008 1.2710 (S2)C-H…S(T) 4 0.0084 0.0058 0.0051 -0.0044 0.0007 1.1660 (S3)S…C_2(T)		2	0.0115	0.0104	0.0088	-0.0072	0.0016	1.2244	$(S2)H\cdots C_5(F)$
2 0.0108 0.0093 0.0081 -0.0069 0.0012 1.1752 (S3)C-H…O(F) 3 0.0114 0.0094 0.0078 -0.0063 0.0015 1.2443 (S3)C-H…C2(F) TS0 1 0.0131 0.0087 0.0074 -0.0061 0.0013 1.2159 (S0)H…C2(T) 2 0.0264 0.0144 0.0137 -0.0131 0.0006 1.0492 (S0)H…C2(T) TS1 1 0.0279 0.0161 0.0153 -0.0146 0.0008 1.0539 (S1)S-H…C2(T) TS2 1 0.0168 0.0130 0.018 -0.0087 0.0022 1.2496 (S2)H…C3(T) 2 0.0060 0.0044 0.0037 -0.0029 0.0008 1.2653 (S2)C-H…S(T) 3 0.0060 0.0045 0.0036 -0.0029 0.0008 1.2710 (S2)C-H…S(T) TS3 1 0.0084 0.0051 -0.0044 0.0007 1.1660 (S3)S…C2(T) 3 0.0100 0.0079 0.0064 -0.0050 0.0015 1.2949 (S3)C-H…C3(T)	FS3	1	0.0099	0.0086	0.0079	-0.0072	0.0007	1.0996	(S3)S…O(F)
3 0.0114 0.0094 0.0078 -0.0063 0.0015 1.2443 (S3)C-H…C2(F) TS0 1 0.0131 0.0087 0.0074 -0.0061 0.0013 1.2159 (S0)H…C2(T) 2 0.0264 0.0144 0.0137 -0.0131 0.0006 1.0492 (S0)H…C5(T) TS1 1 0.0279 0.0161 0.0153 -0.0146 0.0008 1.0539 (S1)S-H…C2(T) TS2 1 0.0168 0.0130 0.0188 -0.0087 0.0022 1.2496 (S2)H…C3(T) 3 0.0060 0.0044 0.0037 -0.0029 0.0008 1.2653 (S2)C-H…S(T) 3 0.0060 0.0045 0.0036 -0.0029 0.0008 1.2710 (S2)C-H…S(T) 53 1 0.0084 0.0058 0.0051 -0.0044 0.0007 1.1660 (S3)S…C2(T) 2 0.0100 0.0079 0.0064 -0.0050 0.0015 1.2949 (S3)C-H…C3(T) 3 0.0071 0.0045 0.0039 -0.0032 0.0007 1.2122 (S3)C-H…C4-C5(T)<		2	0.0108	0.0093	0.0081	-0.0069	0.0012	1.1752	(S3)C-H…O(F)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	0.0114	0.0094	0.0078	-0.0063	0.0015	1.2443	$(S3)C-H\cdots C_2(F)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TS0	1	0.0131	0.0087	0.0074	-0.0061	0.0013	1.2159	$(S0)H\cdots C_2(T)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	0.0264	0.0144	0.0137	-0.0131	0.0006	1.0492	$(S0)H\cdots C_5(T)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TS1	1	0.0279	0.0161	0.0153	-0.0146	0.0008	1.0539	$(S1)S-H\cdots C_2(T)$
2 0.0060 0.0044 0.0037 -0.0029 0.0008 1.2653 (S2)C-H…S(T) 3 0.0060 0.0045 0.0036 -0.0029 0.0008 1.2710 (S2)C-H…S(T) TS3 1 0.0084 0.0058 0.0051 -0.0044 0.0007 1.1660 (S3)S…C ₂ (T) 2 0.0100 0.0079 0.0064 -0.0050 0.0015 1.2949 (S3)C-H…C ₃ (T) 3 0.0071 0.0045 0.0039 -0.0032 0.0007 1.2122 (S3)C-H…C ₄ -C ₅ (T)	TS2	1	0.0168	0.0130	0.0108	-0.0087	0.0022	1.2496	$(S2)H\cdots C_3(T)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	0.0060	0.0044	0.0037	-0.0029	0.0008	1.2653	$(S2)C-H\cdots S(T)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	0.0060	0.0045	0.0036	-0.0029	0.0008	1.2710	$(S2)C-H\cdots S(T)$
2 0.0100 0.0079 0.0064 -0.0050 0.0015 1.2949 (S3)C-H···C ₃ (T) 3 0.0071 0.0045 0.0039 -0.0032 0.0007 1.2122 (S3)C-H···C ₄ -C ₅ (T)	TS3	1	0.0084	0.0058	0.0051	-0.0044	0.0007	1.1660	$(S3)S\cdots C_2(T)$
3 0.0071 0.0045 0.0039 -0.0032 0.0007 1.2122 (S3)C-H···C ₄ -C ₅ (T)		2	0.0100	0.0079	0.0064	-0.0050	0.0015	1.2949	$(S3)C-H\cdots C_3(T)$
		3	0.0071	0.0045	0.0039	-0.0032	0.0007	1.2122	$(S3)C-H\cdots C_4-C_5(T)$

.		•					
Complex	ES	EX	REP	POL	DISP	TE	
BC	-1.99	-0.94	8.27	-1.66	-7.37	-3.69	
RC	-7.15	-3.67	14.66	-3.66	-6.81	-6.63	
QC	-1.84	-0.94	8.02	-1.66	-7.13	-3.55	
UC	-3.16	-1.85	11.05	-2.05	-8.59	-4.59	
ZC	-3.57	-1.56	10.06	-2.13	-8.04	-5.23	
FC	-3.62	-1.32	7.97	-2.07	-5.24	-4.27	
ТС	-2.49	-1.57	9.92	-1.96	-7.88	-3.99	
NO	-7.76	-2.63	10.47	-7.86	-2.93	-10.71	
N1	-6.91	-2.16	9.54	-6.50	-3.76	-9.79	
N2	-6.29	-1.81	9.12	-5.66	-4.63	-9.29	
N3	-5.87	-1.71	8.84	-5.22	-4.7	-8.66	
N4	-4.22	-1.43	7.54	-3.72	-4.31	-6.14	
PO	-6.6	-2.33	9.59	-5.59	-4.22	-9.15	
P1	-5.76	-1.91	9.13	-4.89	-4.88	-8.31	
P2	-5.03	-1.63	8.6	-4.38	-5.29	-7.73	
P3	-4.49	-1.5	8.13	-3.88	-5.12	-6.86	
P4	-4.09	-1.45	7.98	-3.79	-4.9	-6.25	
O0	-12.49	-6.57	23.92	-18.16	-4.61	-17.91	
01	-10.38	-4.54	17.36	-12.73	-4.36	-14.65	
02	-9.36	-3.95	15.24	-10.8	-4.09	-12.96	
03	-4.73	-1.76	8.57	-4.15	-4.64	-6.73	
S0	-8.79	-5.33	16.28	-8.34	-3.53	-9.71	
S1	-6.1	-1.93	9.24	-4.99	-4.77	-8.56	
S2	-5.73	-2.05	9.55	-4.77	-5.35	-8.34	
S 3	-4.71	-1.69	8.69	-3.99	-5.16	-6.86	

Table S6. Contribution of various factors towards the total binding energy as calculated at the M06-2X/6-31G(d) level using the LMO-EDA approach for the $CO_2 \cdots \pi$ complexes.

Complex	ES	EX	REP	POL	DISP	ТЕ	
BN0	-14.15	-4.65	19.58	-11.47	-10.80	-21.50	
BN1	-13.11	-4.45	19.62	-10.41	-11.93	-20.28	
BN2	-12.56	-4.48	19.92	-9.88	-12.46	-19.46	
BN3	-11.10	-4.10	20.63	-8.38	-15.95	-18.90	
BN4	-6.81	-2.91	14.01	-4.81	-10.78	-11.30	
RN1	-10.12	-3.56	16.91	-9.04	-11.16	-16.96	
RN2	-32.08	-19.06	56.15	-26.72	-9.31	-31.01	
RN3	-29.33	-17.3	50.73	-23.29	-9.03	-28.21	
RN4	-12.38	-4.03	15.82	-6.99	-8.60	-16.17	
QN0	-15.66	-7.97	25.51	-18.36	-4.30	-20.78	
QN1	-10.37	-4.44	19.38	-10.46	-11.95	-17.84	
QN2	-8.57	-3.91	18.98	-8.85	-14.34	-16.70	
QN3	-8.26	-3.88	20.38	-8.58	-16.46	-16.79	
QN4	-5.41	-2.99	14.17	-4.81	-10.89	-9.94	
UN0	-12.09	-4.43	18.74	-11.9	-10.50	-20.17	
UN1	-11.49	-4.57	19.27	-10.65	-11.36	-18.80	
UN2	-10.52	-4.28	19.04	-9.98	-12.16	-17.90	
UN3	-9.22	-4.57	21.62	-8.99	-15.66	-16.82	
UN4	-7.27	-3.51	14.67	-5.12	-9.74	-10.98	
ZN0	-19.52	-6.12	23.53	-13.23	-10.64	-25.96	
ZN1	-18.14	-5.83	23.12	-11.80	-11.74	-24.39	
ZN2	-17.00	-5.80	22.93	-11.18	-11.92	-22.97	
ZN3	-15.25	-5.62	23.57	-10.22	-14.07	-21.59	
ZN4	-9.98	-3.87	16.26	-5.60	-11.06	-14.26	
FN0	-12.12	-4.35	18.43	-10.45	-10.05	-18.55	
FN1	-11.52	-4.21	18.94	-10.15	-10.99	-17.93	
FN2	-13.56	-6.87	24.18	-7.86	-11.26	-15.37	
FN3	-9.96	-4.71	21.64	-10.11	-15.13	-18.28	
FN4	-6.48	-2.47	12.30	-5.03	-8.47	-10.15	
TN0	-13.52	-4.96	19.98	-11.68	-10.28	-20.47	
TN1	-12.36	-4.73	19.78	-10.51	-11.29	-19.11	
TN2	-11.91	-4.77	20.08	-9.79	-11.79	-18.18	
TN3	-10.07	-4.33	20.23	-8.61	-14.54	-17.32	
TN4	-6.37	-3.12	14.09	-4.99	-10.33	-10.72	

Table S7. Contribution of various factors towards the total binding energy as calculated at the M06-2X/6-31G(d) level using the LMO-EDA approach for the ammonium ion··· π complexes.

Complex	ES	EX	REP	POL	DISP	ТЕ
BP0	-13.08	-7.32	24.82	-11.01	-12.16	-18.75
BP1	-11.43	-6.54	23.28	-9.13	-13.11	-16.92
BP2	-10.13	-6.00	22.55	-7.77	-14.38	-15.74
BP3	-9.13	-5.58	21.04	-6.74	-13.77	-14.17
BP4	-6.15	-2.63	13.80	-4.67	-11.19	-10.84
RP0	-49.59	-38.44	109.44	-42.87	-13.62	-35.08
RP1	-39.72	-30.01	86.97	-32.29	-15.28	-30.33
RP2	-17.27	-6.88	25.20	-10.55	-11.38	-20.88
RP3	-14.07	-4.80	18.77	-7.99	-10.11	-18.20
RP4	-11.65	-3.69	15.85	-6.75	-9.81	-16.06
QP0	-9.99	-6.39	22.56	-10.77	-11.86	-16.46
QP1	-9.30	-6.10	21.98	-8.94	-12.68	-15.05
QP2	-8.46	-5.74	21.83	-7.63	-14.13	-14.13
QP3	-7.55	-5.34	20.19	-6.51	-13.53	-12.73
QP4	-5.81	-3.16	14.60	-4.74	-11.01	-10.12
UP0	-12.63	-9.37	30.22	-13.82	-12.71	-18.30
UP1	-11.26	-6.61	22.89	-9.46	-11.67	-16.11
UP2	-10.12	-6.08	22.07	-7.68	-13.02	-14.84
UP3	-7.56	-6.12	22.26	-7.25	-13.87	-12.54
UP4	-7.25	-3.56	15.30	-4.86	-10.50	-10.88
ZP0	-19.05	-11.19	34.83	-15.65	-12.88	-23.94
ZP1	-16.26	-8.72	28.64	-11.40	-13.29	-21.02
ZP2	-14.11	-7.09	25.06	-8.62	-14.43	-19.20
ZP	-12.53	-6.45	23.17	-7.44	-13.94	-17.19
ZP4	-9.40	-3.46	15.84	-5.39	-11.53	-13.94
FP0	-11.13	-6.27	22.20	-10.11	-10.84	-16.15
FP1	-10.28	-6.81	23.56	-9.85	-11.98	-15.36
FP2	-9.23	-5.58	22.09	-7.30	-14.07	-14.10
FP3	-8.31	-5.15	20.58	-6.37	-13.65	-12.91
FP4	-6.41	-3.11	15.84	-4.70	-11.96	-10.34
TP0	-12.68	-7.98	26.24	-12.06	-11.76	-18.23
TP1	-10.91	-6.91	23.64	-9.69	-12.30	-16.16
TP2	-9.70	-6.42	22.95	-7.99	-13.67	-14.84
TP3	-8.68	-5.89	21.27	-6.86	-13.12	-13.29
TP4	-5.90	-2.93	14.11	-4.86	-10.74	-10.32

Table S8. Contribution of various factors towards the total binding energy as calculated at the M06-2X/6-31G(d) level using the LMO-EDA approach for the phosphonium ion… π complexes.

Complex	ES	EX	REP	POL	DISP	TE
BO0	-18.67	-4.98	23.04	-17.09	-12.55	-30.25
BO1	-16.84	-5.69	25.06	-16.72	-13.62	-27.81
BO2	-14.05	-5.59	25.41	-14.50	-15.34	-24.07
BO3	-7.55	-2.74	17.39	-4.49	-15.64	-13.03
RO0	-11.88	-4.45	20.76	-17.29	-11.44	-24.31
RO1	-11.93	-4.47	21.44	-14.53	-13.14	-22.64
RO2	-9.93	-4.14	20.93	-12.29	-14.05	-19.47
RO3	-13.48	-4.56	17.50	-7.65	-9.28	-17.47
QO0	-14.81	-6.00	25.56	-20.48	-12.91	-28.64
Q01	-23.34	-16.64	50.58	-39.30	-7.04	-35.75
QO2	-21.34	-14.67	44.83	-31.46	-7.43	-30.06
QO3	-6.62	-3.64	15.76	-5.73	-11.16	-11.39
UO0	-16.47	-6.36	26.72	-21.70	-12.61	-30.42
UO1	-18.12	-8.95	34.13	-22.05	-13.81	-28.80
UO2	-23.85	-18.16	53.76	-35.21	-8.78	-32.24
UO3	-9.05	-4.14	20.44	-4.99	-15.87	-13.61
ZO1	-25.00	-13.81	46.67	-33.97	-12.15	-38.27
ZO2	-22.51	-10.92	40.00	-24.93	-14.30	-32.66
ZO3	-11.10	-4.27	17.41	-6.24	-11.36	-15.56
FO0	-35.09	-31.21	94.30	-72.45	-9.43	-53.88
FO1	-27.31	-19.21	60.30	-36.63	-8.54	-31.39
FO2	-23.35	-15.00	47.84	-26.88	-8.00	-25.39
FO3	-6.75	-2.29	15.69	-4.29	-14.20	-11.84
TO0	-19.22	-10.15	37.17	-28.44	-11.66	-32.29
TO1	-16.96	-6.45	26.52	-17.18	-12.82	-26.89
TO2	-14.56	-7.19	29.31	-17.32	-14.17	-23.92
TO3	-7.39	-3.00	17.16	-4.47	-14.63	-12.32

Table S9. Contribution of various factors towards the total binding energy as calculated at the M06-2X/6-31G(d) level using the LMO-EDA approach for the hydronium ion… π complexes.

Complex	ES	EX	REP	POL	DISP	TE
BS0	-16.21	-9.60	31.35	-15.60	-12.77	-22.84
BS1	-14.22	-8.30	28.19	-12.63	-13.47	-20.44
BS2	-12.52	-8.29	27.61	-11.09	-13.50	-17.79
BS3	-7.62	-3.61	16.69	-5.64	-12.54	-12.73
RS0	-27.93	-14.12	43.37	-18.93	-9.04	-26.66
RS1	-21.92	-9.27	30.82	-13.24	-9.96	-23.58
RS2	-17.92	-6.97	25.05	-10.55	-10.84	-21.23
RS3	-15.26	-5.76	21.07	-8.35	-10.17	-18.47
QS0	-12.12	-11.48	36.26	-20.60	-12.87	-20.82
QS1	-11.30	-9.09	30.50	-14.34	-14.34	-18.57
QS2	-18.06	-17.33	47.05	-23.24	-7.34	-18.92
QS3	-6.92	-3.94	16.95	-5.65	-11.99	-11.56
US0	-13.92	-9.23	30.70	-16.82	-12.73	-22.00
US1	-11.76	-7.87	27.21	-13.26	-13.44	-19.12
US2	-11.42	-7.27	25.28	-9.73	-13.89	-17.03
US3	-9.50	-6.37	22.23	-6.54	-12.32	-12.51
ZS1	-24.62	-20.36	58.07	-26.96	-13.80	-27.68
ZS2	-19.93	-14.19	42.73	-17.74	-14.38	-23.50
ZS3	-11.15	-4.50	18.59	-6.30	-12.62	-15.97
FS0	-19.88	-21.27	61.64	61.64 -33.53		-26.13
FS1	-9.03	-4.69	18.90	-8.30	-11.25	-14.37
FS2	-11.95	-9.49	30.56	-12.85	-12.59	-16.33
FS3	-7.95	-3.69	17.09	-5.57	-11.93	-12.04
TS0	-16.66	-11.73	36.64	-18.3	-12.68	-22.73
TS1	-15.09	-11.98	36.95	-16.34	-13.35	-19.80
TS2	-11.50	-7.28	25.05	-9.20	-13.83	-16.76
TS3	-7.54	-4.12	17.31	-5.83	-12.05	-12.23

Table S10. Contribution of various factors towards the total binding energy as calculated at the M06-2X/6-31G(d) level using the LMO-EDA approach for the sulfonium ion… π complexes.

N	BE	СТ	Р	BE	СТ	0	BE	СТ	S	BE	СТ	CO ₂	BE	СТ
BN0	3.470	0.121	BP0	17.44	4.440	BO0	25.12	3.910	BS0	20.89	7.640	BC	3.20	0.170
BN1	2.960	0.117	BP1	15.85	3.400	BO1	24.19	5.130	BS1	18.82	5.650	RC	5.48	1.330
BN2	2.930	0.116	BP2	14.73	2.550	BO2	22.12	5.790	BS2	16.54	4.680	QC	3.15	0.040
BN3	3.040	0.101	BP3	13.30	2.220	BO3	12.26	0.910	BS3	12.01	1.370	UC	4.15	0.030
BN4	1.510	0.072	BP4	10.03	1.300	RO0	20.81	5.100	RS0	24.75	6.920	ZC	4.54	0.520
RN1	2.260	0.094	RP0	26.38	15.420	RO1	19.34	3.970	RS1	21.70	4.060	FC	3.54	0.300
RN2	12.740	0.169	RP1	21.78	11.890	RO2	17.67	4.370	RS2	19.65	2.680	ТС	3.51	0.400
RN3	11.480	0.162	RP2	18.79	2.640	RO3	16.14	1.950	RS3	16.94	1.720	N0C	9.66	2.070
RN4	1.970	0.067	RP3	16.57	1.840	QO0	24.95	6.660	QS0	18.85	15.090	N1C	8.64	1.410
QN0	13.860	0.186	RP4	14.37	1.410	Q01	25.98	30.230	QS1	17.13	8.250	N2C	8.06	0.920
QN1	3.160	0.109	QP0	15.65	5.220	QO2	22.92	26.500	QS2	14.48	20.880	N3C	7.56	0.800
QN2	3.240	0.103	QP1	14.37	4.070	QO3	11.26	2.470	QS3	11.41	1.990	N4C	4.98	0.560
QN3	4.040	0.107	QP2	13.70	3.160	UO0	25.83	7.100	US0	19.80	9.060	P0C	8.30	0.880
QN4	1.990	0.068	QP3	12.33	2.670	UO1	23.89	9.260	US1	17.44	6.450	P1C	7.42	0.640
UN0	3.760	0.115	QP4	9.85	1.970	UO2	23.70	30.230	US2	16.09	4.190	P2C	6.56	0.470
UN1	3.530	0.107	UP0	15.95	6.390	UO3	13.05	1.730	US3	11.95	2.450	P3C	5.87	0.460
UN2	3.180	0.103	UP1	15.11	4.780	ZO1	29.57	16.550	ZS1	22.71	15.710	P4C	4.93	0.480
UN3	3.840	0.103	UP2	14.08	3.430	ZO2	26.77	12.880	ZS2	20.61	10.190	O0C	16.08	6.380
UN4	2.540	0.060	UP3	11.40	2.810	ZO3	14.06	2.350	ZS3	14.43	1.930	01C	12.98	4.030
ZN0	5.390	0.137	UP4	10.39	2.250	FO0	31.88	22.860	FS0	19.25	19.200	O2C	11.44	3.240
ZN1	4.580	0.127	ZP0	20.80	8.310	FO1	24.49	13.870	FS1	12.10	3.500	O3 C	5.74	0.540
ZN2	4.380	0.125	ZP1	18.71	5.360	FO2	21.08	10.720	FS2	14.35	6.990	S0C	8.79	2.540
ZN	4.720	0.112	ZP2	17.17	3.390	FO3	10.64	1.210	FS3	11.19	1.440	S1C	7.73	0.540
ZN4	2.190	0.077	ZP	15.40	2.890	TO0	27.67	12.910	TS0	20.41	10.540	S2C	7.56	0.600
FN0	3.740	0.101	ZP4	12.35	1.930	TO1	23.75	6.190	TS1	17.83	9.300	S3C	5.93	0.320
FN1	3.740	0.112	FP0	14.39	4.470	TO2	21.60	2.440	TS2	16.02	3.840			
FN2	3.560	0.107	FP1	13.55	4.740	TO3	11.82	1.960	TS3	11.36	2.080			
FN3	3.490	0.095	FP2	12.77	2.480									
FN4	2.060	0.077	FP3	11.67	2.220									
TN0	4.170	0.115	FP4	9.22	1.430									
TN1	3.570	0.107	TP0	16.51	5.700									
TN2	3.520	0.104	TP1	14.86	4.450									
TN3	4.100	0.096	TP2	13.70	3.560									
TN4	2.300	0.068	TP3	12.44	3.120									
			TP4	9.42	2.100									

Table S11. Binding energies (BE in kcal/mol) and NPA charge transfer ($CT*10^2$ in au.) of ammonium ion (N), phosphoniumion (P), hydronium ion (O), sulfonium ion (S) and CO₂ complexes computed at M06-2X/6-311++G(d,p) //M06-2X/6-31G(d) level of theory.

Figure S1. Molecular topological graphs obtained from QTAIM analysis for $CO_2 \cdots \pi$ complexes computed at M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) level of theory.

Figure S2. Molecular topological graphs obtained from QTAIM analysis for ammonium ion… π complexes computed at M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) level of theory.

Figure S3. Molecular topological graphs obtained from QTAIM analysis for phosphonium ion… π complexes computed at M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) level of theory.

Figure S4. Molecular topological graphs obtained from QTAIM analysis for hydronium ion… π complexes computed at M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) level of theory.

Figure S5. Molecular topological graphs obtained from QTAIM analysis for sulfonium ion··· π complexes computed at M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) level of theory.

Figure S6. Variation of binding energies (BE in kcal/mol) and NPA charge transfer (in a.u) of phosphonium ion, hydronium ion and sulfonium ion complexes computed at M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) level of theory. (Blue: Binding energy and Black: Charge transfer)

Figure S7. Contribution of various factors towards the total binding energy as calculated at the M06-2X/6-31G(d) level using the LMO-EDA approach for phosphonium ion, hydronium ion and sulfonium ion complexes. (Black: Electrostatic, Red: Exchange, Green: Repulsion, Blue: Polarization, Cyan: Dispersion, Pink: Total Interaction Energy)