Electronic supplementary information for

Optical excitation of MgO nanoparticles; A computational perspective

Milena C. C. Wobbe¹, Andrew Kerridge^{1,2}, and Martijn A. Zwijnenburg^{1,*}

¹Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K. Email: m.zwijnenburg@ucl.ac.uk

² Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K.

Fig. S1 Effect of the frozen core approximation on the lowest EOM-CCSD excitation energies of $(MgO)_2$. Blue diamonds $1-{}^1b_{1g}$ state, orange squares $1-{}^1b_{3u}$ state, and grey triangles $1-{}^1b_{1g}$ state.

Fig. S2 Excitation energies of the two lowest excitations of the $(MgO)_4$ cluster as calculated using TD-DFT and EOM-CC. Blue diamonds 1-¹t state, red diamonds 2-¹t state. Calculations were performed in the D₂ sub of the full T_d point group because the EOM-CCSD implementation cannot handle non-Abelian point groups, and hence we cannot distinguish t₁ from t₂ states.

Fig. S3 Excitation energies of the three lowest excitations of the hexagonal (MgO)₆ cluster as calculated using TD-DFT and EOM-CC. Blue squares $1^{-1}a$ state, red diamonds $1^{-1}e$ state, and yellow circles $2^{-1}e$ state. Calculations were performed in the C_s sub of the full D_{3d} point group because the EOM-CCSD implementation cannot handle non-Abelian point groups, and hence we cannot distinguish e_g from e_u states, nor a from b states.

Fig. S4 Excitation energies of the four lowest excitations of the cubic (MgO)₆ cluster as calculated using TD-DFT and EOM-CC. Blue diamonds $1^{-1}b_2u$ state, red squares $1^{-1}b_3g$ state, grey triangles $1^{-1}b_1g$ state, and yellow circles $1^{-1}a_g$ state.

Fig. S5 Lowest vertical excitation energy (LVEE) of $(MgO)_4$ to $(MgO)_{108}$ nanocubes calculated using TD-B3LYP and TD-BHLYP and the DZ(D)P basis-set. Orange squares represent TD-B3LYP results, grey triangles TD-BHLYP results and the dashes lines the experimental absorption on-set of 3 nm particles.

Fig. S6 Lowest vertical excitation energy (LVEE) of $(MgO)_1$ to $(MgO)_{32}$ calculated using TD-CAM-B3LYP. Open symbols correspond to particles with faces containing odd number of atoms.

Fig. S7 unshifted TD-BHLYP calculated absorption spectra (without the 0.5 eV rigid blue-shift discussed in the text) of $(MgO)_{24}$, $(MgO)_{32}$, $(MgO)_{40}$ and $(MgO)_{48}$.

Fig. S8 Comparison of the absorption spectra of the def2-TZVP and DZ(D)P TD-BHLYP spectra of $(MgO)_{32}$ (including the 0.5 eV rigid red-shift discussed in the text).

Fig. S9 Comparison of the absorption spectrum of $(MgO)_{32}$ as calculated with TD-B3LYP and TD-BHLYP.

Particle	Edges (nm)	Body diagonal (nm)
(MgO) ₂₄	0.59 (2x) / 0.4	0.94
(MgO) ₃₂	0.59 (3x)	1.02
(MgO) ₄₀	0.79 / 0.59 (2x)	1.16
(MgO) ₄₈	1.01 / 0.59 (2x)	1.32
(MgO) ₁₀₈	0.99 (3x)	1.72

Table S1 Length of the edges and body diagonal of the DFT optimised cuboid MgO nanoparticles.