V. Cantatore, G. Granucci, M. Persico The photo-orientation of azobenzene in viscous solutions, simulated by a stochastic model.

Supplementary information.

Figure S1: Autocorrelation functions of the molecular axes $\langle P_{1,n} \rangle (t) = \langle \hat{n}(t_0) \cdot \hat{n}(t_0 + t) \rangle$, obtained by averaging over t_0 the results of the ground state dynamics of TAB and CAB in ethylene glycol.

Figure S2: Autocorrelation functions of the molecular axes $\langle P_{2,n} \rangle (t) = \frac{1}{2} \langle 3[\hat{n}(t_0) \cdot \hat{n}(t_0 + t)]^2 - 1 \rangle$, obtained by averaging over t_0 the results of the ground state dynamics of TAB and CAB in ethylene glycol.

Figure S3: Isomeric fraction of CAB as a function of time. Wavelengths λ_{exc} in nm, irradiances F in GW/cm².

Figure S4: Dichroic ratios as functions of time, with $\lambda_{exc} = 313$ nm and two different values of irradiance.