Supplementary material: An atom in molecules study of infrared intensity enhancements

in fundamental donor stretching bands on hydrogen bond formation.

Luiz A. Terrabuio, Wagner E. Richter, Arnaldo F. da Silva Filho, Roy E. Bruns, Roberto L.A.

Haiduke*

* haiduke@iqsc.usp.br

|--|

System	distance/angle	CCSD/aug-cc-pVTZ	CCSD/cc-pVQZ-mod	Exp.
HF	r(HF)	0.918	0.914	0.917ª
HCl	r(HCl)	1.276	1.273	1.275ª
HCN	r(HC)	1.065	1.064	1.066ª
	r(CN)	1.153	1.149	1.153ª
HNC	r(HN)	0.995	0.993	0.996 ^b
	r(NC)	1.168	1.165	1.168 ^b
H_2O	r(HO)	0.959	0.955	0.958ª
-	Θ(HOH)	104.4	104.4	104.5ª
HFHF	r(HF) _{donor}	0.923	0.918	
	r(HF) _{acceptor}	0.920	0.916	
	r(FH)	1.842	1.841	
	r(FF)	2.75	2.75	$2.72 \pm 0.03^{\circ}$
	$\Theta(H-F_{donor}F)$	7	7	$10 \pm 6^{\circ}$
	$\Theta(H-F_{acceptor}F)$	111	111	117 ± 6^{c}
HClHCl	r(HCl) _{donor}	1.279	1.276	
	r(HCl) _{accentor}	1.278	1.275	
	r(ClH)	2.588	2.636	
	r(ClCl)	3.848	3.892	3.746 ^d
	Θ(H-Cl _{donor} Cl)	8	8	9 ^d
	$\Theta(\text{H-Cl}_{\text{accentor}}\text{Cl})$	88.2	88.4	90.2 ^d
HCNHCN	r(HC) _{donor}	1.070	1.070	1.246 ^e
	r(CN) _{donor}	1.153	1.150	1.140 ^e
	r(HC) _{accentor}	1.066	1.065	1.063 ^e
	r(CN) _{acceptor}	1.151	1.148	1.123 ^e
	r(NH)	2.255	2.240	2.075 ^e
	r(NN)	4.488	4.460	4.461e
HNCHNC	r(HN) _{donor}	1.008	1.006	
	r(NC) _{donor}	1.167	1.164	
	r(HN)acceptor	0.996	0.995	
	r(NC) _{acceptor}	1.163	1.160	
	r(CH)	2.111	2.120	
HCNHF	r(HF) _{donor}	0.929	0.923	
	r(HC) _{accentor}	1.066	1.065	
	r(CN) _{acceptor}	1.149	1.146	
	r(NH)	1.868	1.883	
	r(NF)	2.796	2.806	2.796 ^f
HFHCl	r(HCl) _{donor}	1.280	1.277	
	r(HF) _{acceptor}	0.920	0.915	
	r(FH)	2.096	2.097	2.12 ^g
	r(ClF)	3.37	3.36	3.37 ^g
	$\Theta(\text{H-Cl}_{\text{donor}} \dots \text{F})$	6	7	
	Θ(H-F acceptorCl)	117	115	130 ^g
H ₂ OHF	r(HF) _{donor}	0.930	0.926	
	r(OH) _{acceptor}	0.958	0.954	
	r(OH)	1.741	1.741	
	r(OF)	2.67	2.65	2.662 ^h
	$\Theta(H_{-}F, O)$	0.4	0.5	

^a Haynes, W.M., Ed., CRC Handbook of Chemistry and Physics; 93st Ed. (Internet Version 2013); CRC Press/Taylor and Francis, Boca Raton, FL.

^b Okabayashi, T.; Tanimoto, M. Millimeter and Submilliter-Wave Spectroscopy of HNC and DNC in the Vibrationally Excided-States. J. Chem. Phys. **1993**, *99*, 3268-3271.

^c Howard, B.J.; Dyke, T.R.; Klemperer, W. The Molecular-Beam Spectrum and the Structure of the Hydrogen-Fluoride Dimer. J. Chem. Phys. **1984**, *81*, 5417-5425.

^d Semiempirical values from Elrod, M.J.; Saykally, R.J. Determination of the Intermolecular Potential-Energy Surface for (HCl)₂ from Vibration-Rotation-Tunneling Spectra. J. Chem. Phys. **1995**, 103, 933-949.

The largest deviations in bond lengths (roughly 0.2 Å) are observed for two values of the HCN...HCN dimer but, as discussed in the experimental data source,^e they can be explained by inaccuracies in microwave derived distances since the hydrogen from the donor molecule is very close to the center of mass.

^e Ruoff, R.S.; Emilsson, T.; Chuang, C.; Klots, T.D.; Gutowsky, H.S. Experimental Separation of Torsional and Charge Redistribution Effects in Rotational Spectra of HCN Dimers. *Chem. Phys. Letters* **1987**, *138*, 553-558.

^f Legon, A.C.; Millen, D.J.; Rogers, S.C. Dipole-Moment Enhancement on Formation of a Hydrogen-Bonded Complex -

Demostration and Measurement of Effect for HCN...HF by Microwave Spectroscopy. *Chem. Phys. Letters* **1976**, *41*, 137-138. ² Janda, K.C.; Steed, J.M.; Novick, S.E.; Klemperer, W. Hydrogen-Bonding - Structure of HF-HCl. J. Chem. Phys. **1977**, *67*, 5162-

^g Janda, K.C.; Steed, J.M.; Novick, S.E.; Klemperer, W. Hydrogen-Bonding - Structure of HF-HCl. J. Chem. Phys. **1977**, 67, 5162-5172.

^h Bevan, J.W.; Kisiel, Z.; Legon, A.C.; Millen, D.J.; Rogers, S.C. Spectroscopic Investigations of Hydrogen-Bonding Interactions in the Gas-Phase.4. The Heterodimer H2O...HF - The Observation and Analysis of Its Microwave Rotational Spectrum and the Determination of Its Molecular-Geometry and Electric-Dipole Moment. *Proc. R. Soc. Lond. A* **1980**, *372*, 441-451.

System	Atom ^a	$q_i(e)$	System	Atom ^a	$q_i(e)$
HF	Н	0.753	HNCHNC	H _d	0.585
HCl	Н	0.256		N_d	-1.615
HCN	Н	0.191		C_{d}	1.000
	С	1.015		Ha	0.566
	Ν	-1.207		Na	-1.556
HNC	Н	0.551		Ca	1.020
	Ν	-1.581	HCNHF	H_{d}	0.774
	С	1.030		F_d	-0.801
H ₂ O	Н	0.588		H _a	0.214
	0	-1.176		Ca	1.059
HFHF	H_{d}	0.774		N _a	-1.247
	F_d	-0.785	HFHCl	H_{d}	0.299
	H _a	0.770		Cl_d	-0.303
	F _a	-0.759		H _a	0.764
HClHCl	H_{d}	0.274		Fa	-0.761
	Cl_d	-0.285	H ₂ OHF	H_{d}	0.782
	H _a	0.267		F_d	-0.806
	Cl_a	-0.256		Ha	0.616
HCNHCN	H_{d}	0.247		O _a	-1.207
	C_d	0.984			
	N_d	-1.242			
	Ha	0.208			
	C_a	1.043			
	N _a	-1.240			

Table S2: QTAIM charges obtained from CCSD/cc-pVQZ-mod calculations at equilibrium geometries.

^a The letters "a" and "d" refer to acceptor and donor monomers, respectively.

Table S3: Ratio between square roots of fundamental infrared intensities of HX_{donor} stretching modes in dimers (D) and monomers (M) along with the equivalent ratio from p_{zz}^{H} elements of donor monomers as obtained from CCSD/cc-pVQZ-mod calculations.

	A^D	$p_{zz}^D/$
Dimers	$\sqrt{A^M}$	p_{zz}^{M}
HFHF	1.97	1.90
HClHCl	2.14	2.14
HCNHCN	2.17	2.28
HNCHNC	2.12	2.31
HCNHF	2.66	2.69
HFHCl	2.21	2.20
H_2OHF	2.55	2.63

Table S4: Variations in QTAIM/CCFDF contributions to the infrared intensities of X-H stretching modes (km mol⁻¹) due to dimerization according only to p_{zz}^{H} elements of donor monomers as obtained from CCSD/cc-pVQZ-mod calculations.

Dimers		QTAIM/CCFDF ^a							
YНХ	Attrib.	$\Delta(A^{C})$	$\Delta(A^{CF})$	$\Delta(A^{DF})$	$\Delta(A^{C \times CF})$	$\Delta(\mathbf{A}^{\mathbf{C}\times\mathbf{DF}})$	$\Delta(A^{CF \times DF})$	$\Delta(A^{CFterms})$	Tot
HFHF	HF _{donor}	31.2	-248.0	30.7	301.3	92.4	62.7	116.1	270.4
HClHCl	HCl _{donor}	9.3	127.9	-59.8	86.3	19.4	-52.9	161.4	130.2
HCNHCN	HC _{donor}	24.0	450.9	31.0	210.9	-79.2	-387.5	274.3	250.2
HNCHNC	HN _{donor}	37.8	353.5	-2.0	603.7	-8.2	-206.4	750.9	778.6
HCNHF	HF _{donor}	31.9	-446.3	-10.2	800.2	-20.0	288.9	642.8	644.5
HFHCl	HCl _{donor}	23.2	114.0	-57.8	105.9	-2.4	-45.0	174.9	137.9
H ₂ OHF	HF _{donor}	44.0	-401.9	39.6	623.5	118.8	190.2	411.8	614.2

^a $\Delta(A^i) = A^i(dimer) - A^i(monomer)$.

							Other atoms		
Monomer	q _{Hd}	$-R_{XHd}\frac{\partial q_X}{\partial z_{Hd}}$	$R_{YHd} \frac{\partial q_Y}{\partial z_{Hd}}$	$\frac{\partial m_{Hd,z}}{\partial z_{Hd}}$	$\frac{\partial m_{X,z}}{\partial z_{Hd}}$	$\frac{\partial m_{Y,z}}{\partial z_{Hd}}$	CF	DF	Tot
HF	0.753	-0.691	-	-0.074	0.338	-	-	-	0.326
HCl	0.256	0.423	-	0.077	-0.562	-	-	-	0.194
HCN	0.191	0.536	-	0.075	-0.656	-	0.130	-0.029	0.247
HNC	0.551	-0.127	-	0.066	-0.258	-	0.211	-0.015	0.427
Dimer	q _{Hd}	$-R_{XHd} \frac{\partial q_X}{\partial z_{Hd}}$	$R_{YHd} rac{\partial q_Y}{\partial z_{Hd}}$	$\frac{\partial m_{Hd,z}}{\partial z_{Hd}}$	$\frac{\partial m_{X,z}}{\partial z_{Hd}}$	$\frac{\partial m_{Y,z}}{\partial z_{Hd}}$	CF	DF	Tot
HFHF	0.774	-0.534	-0.018	-0.015	0.283	0.049	0.079	0.002	0.619
HClHCl	0.274	0.486	0.023	0.102	-0.556	0.037	0.048	-0.001	0.414
HCNHCN	0.247	0.559	-0.066	0.110	-0.696	-0.008	0.459	-0.042	0.564
HNCHNC	0.585	-0.020	0.007	0.092	-0.292	-0.015	0.621	0.013	0.991
HCNHF	0.774	-0.473	-0.072	-0.012	0.282	-0.009	0.403	-0.017	0.876
HFHCl	0.299	0.517	-0.027	0.119	-0.566	0.025	0.054	0.002	0.423
$\mathrm{H}_{2}\mathrm{O}\mathrm{HF}$	0.782	-0.444	-0.059	0.005	0.275	0.035	0.247	0.018	0.858

Table S5: Atomic terms of the QTAIM/CCFDF analysis of the polar tensor elements (*e*) associated with parallel dipole moment derivatives for displacements of the bridge hydrogen along the X-H axis from CCSD/cc-pVQZ-mod calculations.^a

^a The letter "d" labelling some of the terms refers to donor monomers.

Table S6: Contributions from charge, charge flux (donor, charge transfer and acceptor) and polarization changes (donor and acceptor) as given by the QTAIM/CCFDF analysis of the polar tensor elements (*e*) associated with parallel dipole moment derivatives for displacements of the bridge hydrogen along the X-H axis from CCSD/cc-pVQZ-mod calculations.^a

Monomer	\mathbf{q}_{Hd}	$\sum_{Z_{int}} \frac{\partial q_i}{\partial q_i}$	$\sum_{Z_{YIII}} \frac{\partial q_i}{\partial q_i}$	$\sum_{Z_{iY}} \frac{\partial q_i}{\partial q_i}$	$\sum \frac{\partial m_{i,z}}{\partial m_{i,z}}$	$\sum \frac{\partial m_{i,z}}{\partial m_{i,z}}$	Tot
		$\sum_{i \in d} -iHa \partial z_{Hd}$	$\sum_{i \in a} IHa \partial z_{Hd}$	$\sum_{i\in a} I^{i} \partial z_{Hd}$	$\sum_{i \in d} \partial z_{Hd}$	$\sum_{i \in a} \partial z_{Hd}$	
HF	0.753	-0.691	-	-	0.264	-	0.326
HCl	0.256	0.423	-	-	-0.485	-	0.194
HCN	0.191	0.666	-	-	-0.610	-	0.247
HNC	0.551	0.084	-	-	-0.208	-	0.427
Dimer	$q_{\rm Hd}$	$\sum z_{i} \frac{\partial q_i}{\partial q_i}$	$\sum_{z_{i}} \frac{\partial q_i}{\partial q_i}$	$\sum z_{i} \frac{\partial q_i}{\partial q_i}$	$\sum \frac{\partial m_{i,z}}{\partial m_{i,z}}$	$\sum \frac{\partial m_{i,z}}{\partial m_{i,z}}$	Tot
		$\sum_{i \in d} \partial z_{Hd}$	$\sum_{i \in a} \mathcal{I}_{Hd} \partial z_{Hd}$	$\sum_{i \in a} -iY \partial z_{Hd}$	$\sum_{i \in d} \partial z_{Hd}$	$\sum_{i \in a} \partial z_{Hd}$	
HFHF	0.774	-0.534	0.053	0.008	0.268	0.051	0.619
HClHCl	0.274	0.486	0.076	-0.005	-0.454	0.036	0.414
HCNHCN	0.247	0.794	0.066	0.092	-0.620	-0.015	0.564
HNCHNC	0.585	0.289	0.191	0.128	-0.185	-0.017	0.991
HCNHF	0.774	-0.473	0.148	0.183	0.270	-0.026	0.876
HFHCl	0.299	0.517	0.020	0.007	-0.447	0.027	0.423
$H_2O\ldots HF$	0.782	-0.444	0.127	0.061	0.280	0.053	0.858

^a The letters "a" and "d" labelling some of the terms refer to acceptor and donor monomers, respectively.