## Supporting Information to: Explicitly correlated PNO-MP2 and PNO-CCSD and its application to the S66 set and large molecular systems

Gunnar Schmitz<sup>1</sup>, Christof Hättig<sup>1</sup> and David P. Tew<sup>2</sup>

<sup>1</sup> Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum, Germany

 $^{2}$  Center for Computational Chemistry, University of Bristol, Bristol BS8 1TS

## 1 supplementary material

## 1.1 Integral screening for short range operators

For the integral screening we follow the work of Adler et al. [?] and implemented their introduced bounds. Additional we derived simpler and cheaper estimates by using only the most diffuse functions<sup>1</sup> and setting the corresponding contraction coefficients  $C_{\mu}$  etc. to one. In this way many quantities can be precomputed and with the additional approximation that the distance x of the Gaussians is set to the shortest distance x' between the center of the auxiliary function and the line connecting the atoms at which, the two Gaussians are located (see Figure 1), we get always an upper bound to their estimate. To denote the we used the most diffuse functions we use a prime for the corresponding exponents  $\alpha$  and  $\beta$  and basis functions  $\mu$ ,  $\nu$ . The bounds are given as:



Figure 1: Demonstration how the distance x' of the auxiliary function to the basis functions is calculated.

 $<sup>^1\</sup>mathrm{In}$  our derivation we assumed normalized functions, otherwise the normalization hast to be incorporated

$$f_{12}: \quad \ln \sum_{\mu\nu} \sum_{Q} C_Q C_\mu C_\nu K_{\mu\nu} \left( S_{\mu\nu} \right) f_{12} |Q)$$
  
$$\leq -\ln \gamma + 3 \ln \pi$$
  
$$- \frac{3}{2} \ln \left( a_{\mu'\nu'} \beta' \right) - \gamma x' + \gamma^2 / (4\xi') - \frac{a_{\mu'} a_{\nu'}}{a_{\mu'\nu'}} r_{ab}^2$$

$$f_{12}g_{12}: \quad \ln \sum_{\mu\nu} \sum_{Q} C_Q C_\mu C_\nu K_{\mu\nu} \left( S_{\mu\nu} \right| f_{12}g_{12} \left| Q \right)$$
  
$$\leq -\ln \gamma x' + 3\ln \pi$$
  
$$- \frac{3}{2} \ln \left( a_{\mu'\nu'}\beta' \right) - \gamma x' + \gamma^2 / (4\xi') - \frac{a_{\mu'}a_{\nu'}}{a_{\mu'\nu'}} r_{ab}^2$$

$$f_{12}^{2}: \quad \ln \sum_{\mu\nu} \sum_{Q} C_{Q} C_{\mu} C_{\nu} K_{\mu\nu} \left( S_{\mu\nu} | f_{12}^{2} | Q \right)$$
  
$$\leq -2 \ln \gamma + 3 \ln \pi$$
  
$$- \frac{3}{2} \ln \left( a_{\mu'\nu'} \beta' \right) - 2\gamma x' + \gamma^{2} / \xi' - \frac{a_{\mu'} a_{\nu'}}{a_{\mu'\nu'}} r_{ab}^{2}$$

$$f_{12}^2 r_{12}^2 : \ln \sum_{\mu\nu} \sum_Q C_Q C_\mu C_\nu K_{\mu\nu} \left( S_{\mu\nu} | f_{12}^2 | Q \right)$$
  
$$\leq \ln \left( 1 + \frac{2}{\gamma x} \right) - 3 \ln \pi$$
  
$$+ \frac{3}{2} \ln \left( a_{\mu'\nu'} \beta' \right) - \gamma x' + \gamma^2 / \left( 4\xi' \right) - \frac{a_{\mu'} a_{\nu'}}{a_{\mu'\nu'}} r_{ab}^2$$

As usual  $K_{\mu\nu}$  is the preexponential factor of a Gaussian product center,  $\alpha_{\mu\nu}$  is the sum of the exponents  $\alpha_{\mu} \alpha_{\nu}$  and  $\xi$  is defined as  $\xi = \frac{\alpha_{\mu\nu}\beta}{\alpha_{\mu\nu}+\beta}$ . Moreover  $r_{ab}$  is the distance of two Gaussians centered at Atom A and B and  $S_{\mu\nu}$  an overlap.

In our algorithm first the cheap estimate is used. If the matrix element is smaller than the threshold it is discarded, but if it is in tolerance range of +2 on a logarithmic scale it is checked again with the estimate involving the contracted GTOs. For large systems we expect a benefit of this approach. Nevertheless also the more evolved estimate is relatively cheap to compute.

## 1.2 CCSD/CBS limits for the S66 set

| Dimor                               | FCCSD                 | $F^{\rm HF} \perp F^{\rm CCSD}$ | $F^{\rm HF,CABS} \perp F^{\rm CCSD}$ | Δ                                                 |
|-------------------------------------|-----------------------|---------------------------------|--------------------------------------|---------------------------------------------------|
| Dimer                               | $L_{\rm lim}$         | $L_{aQZ} + L_{lim}$             | $L_{aTZ} + L_{lim}$                  | $\Delta$ [F12],(2) $\overline{F12}$<br>(kcal/mol) |
| 01 Water Water                      | (KCal/III01)<br>1.062 | 4 728                           | (KCa1/1101)<br>                      |                                                   |
| 02 Water MoOH                       | -1.002                | -4.120                          | -4.710                               | -0.019                                            |
| 02 Water-MeOII<br>03 Water MeNH2    | -1.090                | -5.500                          | -5.294                               | 0.010                                             |
| 04 Water Poptida                    | -1.929                | -0.042                          | -0.000                               | -0.084                                            |
| of M-OH M-OH                        | -1.950                | -1.120                          | -1.111                               | -0.015                                            |
| 05 MeOH-MeOH                        | -1.850                | -0.383                          | -0.372                               | -0.097                                            |
| 06 MeOH-MeNH2                       | -2.130                | -0.985                          | -0.980                               | -0.045                                            |
| 07 MeOH-Peptide                     | -2.460                | -1.081                          | -1.011                               | -0.059                                            |
| 08 MeOH-water                       | -1.258                | -4.752                          | -4.743                               | -0.073                                            |
| 09 MeNH2-MeOH                       | -1.796                | -2.705                          | -2.699                               | -0.046                                            |
| 10 MeNH2-MeNH2                      | -2.726                | -3.639                          | -3.635                               | -0.013                                            |
| 11 MeNH2-Peptide                    | -3.243                | -4.727                          | -4.720                               | -0.047                                            |
| 12 MeNH2-Water                      | -2.323                | -6.846                          | -6.839                               | -0.110                                            |
| 13 Peptide-MeOH                     | -2.546                | -5.690                          | -5.682                               | -0.031                                            |
| 14 Peptide-MeNH2                    | -3.311                | -6.774                          | -6.771                               | -0.082                                            |
| 15 Peptide-Peptide                  | -3.270                | -7.881                          | -7.872                               | -0.073                                            |
| 16 Peptide-Water                    | -1.425                | -4.840                          | -4.834                               | 0.021                                             |
| 17 Uracil-Uracil BP                 | -3.368                | -16.220                         | -16.200                              | 0.072                                             |
| 18 Water-Pyridine                   | -2.009                | -6.446                          | -6.441                               | -0.042                                            |
| 19 MeOH-Pyridine                    | -2.583                | -6.829                          | -6.824                               | -0.040                                            |
| 20 AcOH-AcOH                        | -2.777                | -18.372                         | -18.351                              | 0.075                                             |
| 21 AcNH2-AcNH2                      | -3.237                | -15.547                         | -15.528                              | 0.019                                             |
| 22 AcOH-Uracil                      | -2.971                | -18.681                         | -18.660                              | 0.017                                             |
| 23 AcNH2-Uracil                     | -3.068                | -18.378                         | -18.358                              | 0.053                                             |
| 24 Benzene-Benzene $\pi\text{-}\pi$ | -5.362                | -1.403                          | -1.401                               | -0.048                                            |
| 25 Pyridine-Pyridine $\pi$ - $\pi$  | -5.712                | -2.382                          | -2.379                               | -0.013                                            |
| 26 Uracil-Uracil $\pi$ - $\pi$      | -7.950                | -7.571                          | -7.563                               | -0.244                                            |
| 27 Benzene-Pyridine $\pi$ - $\pi$   | -5.581                | -1.964                          | -1.962                               | -0.056                                            |
| 28 Benzene-Uracil $\pi$ - $\pi$     | -7.199                | -3.759                          | -3.754                               | -0.087                                            |
| 29 Pyridine-Uracil $\pi$ - $\pi$    | -6.971                | -4.901                          | -4.895                               | -0.090                                            |
| 30 Benzene-Ethene                   | -3.448                | -0.585                          | -0.584                               | 0.001                                             |
| 31 Uracil-Ethene                    | -3.804                | -2.408                          | -2.406                               | -0.072                                            |
| 32 Uracil-Ethyne                    | -3.237                | -2.861                          | -2.859                               | -0.119                                            |
| 33 Pyridine-Ethene                  | -3.605                | -0.978                          | -0.976                               | -0.048                                            |
| 34 Pentane-Pentane                  | -5.947                | -2.585                          | -2.583                               | 0.015                                             |
| 35 Neopentane-Pentane               | -4.158                | -1.846                          | -1.843                               | 0.063                                             |
| 36 Neopentane-Neopentane            | -2.869                | -1.195                          | -1.194                               | -0.019                                            |
| 37 Cyclopentane-Neopentane          | -3.906                | -1.600                          | -1.598                               | 0.010                                             |
| 38 Cyclopentane-Cyclopentane        | -4.614                | -2.033                          | -2.031                               | 0.002                                             |
| 39 Benzene-Cyclopentane             | -5.223                | -2.361                          | -2.359                               | -0.035                                            |
| 40 Benzene-Neopentane               | -4.082                | -1.952                          | -1.950                               | 0.028                                             |
| 41 Uracil-Pentane                   | -6.708                | -3.264                          | -3.262                               | -0.083                                            |
| 42 Uracil-Cyclopentane              | -5.911                | -2.746                          | -2.744                               | -0.012                                            |
| 43 Uracil-Neopentane                | -4.670                | -2.604                          | -2.603                               | -0.047                                            |
| 44 Ethene-Pentane                   | -3.175                | -1.360                          | -1.359                               | 0.005                                             |
| 45 Ethyne-Pentane                   | -2.634                | -1.171                          | -1.170                               | 0.008                                             |
| 46 Peptide-Pentane                  | -5.798                | -3.003                          | -3.000                               | -0.039                                            |
| 47 Benzene-Benzene TS               | -3 476                | -2.029                          | -2.028                               | -0.009                                            |
| 48 Pyridine-Pyridine TS             | -3.533                | -2.667                          | -2.666                               | -0.084                                            |
| 49 Benzene-Pyridine TS              | -3.433                | -2.490                          | -2.489                               | -0.075                                            |
| 50 Benzene-Ethyne CH- $\pi$         | -2.152                | -2.377                          | -2.378                               | -0.155                                            |
| 51 Ethyne-Ethyne TS                 | -0.811                | -1 328                          | -1 329                               | 0.061                                             |
| 52 Benzene-AcOH OH- $\pi$           | -3 235                | -3 916                          | _3 014                               | -0.059                                            |
| 53 Benzene-AcNH2 NH $_{\pi}$        | -9.898                | -3.603                          | -3 602                               | -0.003                                            |
| 54 Benzene-Water $OH = \pi$         | -2.020                | -9.780                          | -9.786                               | -0.000                                            |
| 55 Benzene-MeOH OH- $\pi$           | -3 496                | -3 356                          | -3 354                               | -0.039                                            |
| 00 DOIDOID-MICOTI OII-//            | 0.400                 | 0.000                           | -0.004                               | -0.009                                            |

| 56 Benzene-MeNH2 NH- $\pi$   | -3.510 | -2.422 | -2.420 | -0.084 |
|------------------------------|--------|--------|--------|--------|
| 57 Benzene-Peptide NH- $\pi$ | -4.686 | -4.168 | -4.166 | -0.097 |
| 58 Pyridine-Pyridine CH-N    | -2.444 | -3.608 | -3.605 | -0.099 |
| 59 Ethyne-Water CH-O         | -0.553 | -2.759 | -2.757 | -0.064 |
| 60 Ethyne-AcOH OH $\pi$      | -1.813 | -4.420 | -4.422 | -0.026 |
| 61 Pentane-AcOH              | -4.107 | -2.021 | -2.020 | 0.008  |
| 62 Pentane-AcNH2             | -4.657 | -2.502 | -2.500 | 0.009  |
| 63 Benzene-AcOH              | -4.070 | -2.810 | -2.807 | -0.021 |
| 64 Peptide-Ethene            | -2.884 | -2.334 | -2.331 | -0.042 |
| 65 Pyridine-Ethyne           | -1.199 | -3.727 | -3.727 | -0.049 |
| 66 MeNH2-Pyridine            | -3.619 | -3.153 | -3.149 | -0.080 |

Table 2: Dimers in the S66 set with an absolute deviation to the PNO-CCSD[F12]/aTZ results larger 0.2 kcal/mol

| 2 KCal/ 11101                         |                      |
|---------------------------------------|----------------------|
| Dimer                                 | LitPNO-CCSD[F12]/aTZ |
| 24 Benzene-Benzene $\pi\text{-}\pi$   | 0.357                |
| 25 Pyridine-Pyridine $\pi$ - $\pi$    | 0.386                |
| 26 Uracil-Uracil $\pi$ - $\pi$        | 0.545                |
| 27 Benzene-Pyridine $\pi$ - $\pi$     | 0.371                |
| 28 Benzene-Uracil $\pi\text{-}\pi$    | 0.519                |
| 29 Pyridine-Uracil $\pi$ - $\pi$      | 0.499                |
| 30 Benzene-Ethene                     | 0.241                |
| 31 Uracil-Ethene                      | 0.272                |
| 32 Uracil-Ethyne                      | 0.258                |
| 33 Pyridine-Ethene                    | 0.255                |
| 34 Pentane-Pentane                    | 0.281                |
| 38 Cyclopentane-Cyclopentane          | 0.224                |
| 39 Benzene-Cyclopentane               | 0.306                |
| 40 Benzene-Neopentane                 | 0.231                |
| 41 Uracil-Pentane                     | 0.388                |
| 42 Uracil-Cyclopentane                | 0.328                |
| 43 Uracil-Neopentane                  | 0.262                |
| 46 Peptide-Pentane                    | 0.315                |
| 47 Benzene-Benzene TS                 | 0.209                |
| 48 Pyridine-Pyridine TS               | 0.218                |
| 49 Benzene-Pyridine TS                | 0.211                |
| 52 Benzene-AcOH OH $\pi$              | 0.204                |
| 55 Benzene-MeOH OH $\pi$              | 0.246                |
| 56 Benzene-MeNH <sub>2</sub> NH $\pi$ | 0.227                |
| 57 Benzene-Peptide NH $\pi$           | 0.289                |
| 61 Pentane-AcOH                       | 0.219                |
| 62 Pentane-AcNH <sub>2</sub>          | 0.247                |
| 63 Benzene-AcOH                       | 0.286                |
| $66 \text{ MeNH}_2$ -Pyridine         | 0.207                |