Supplementary Information

Effects of electron charge density and particle size of alkali metal titanate nanotubes-supported Pt photocatalysts on production of H_2 from neat alcohol

Chiu-Hsun Lin^a*, Jiunn-Hsing Chao^b, Wei-Je Tsai^c, Meng-jou He^a, Ting-Ju Chiang^a

^a Department of Chemistry, National Changhua University of Education, Changhua 500,

Taiwan

^b Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300, Taiwan

^cNo. 25, 488th Lane, 2nd Floor, Ta Po Rd., Changhua 500, Taiwan

Scheme S1. Schematic diagram for the photocatalytic system: 1. 80 mL quartz tube with a rubber septum, 2. reaction mixture containing 15 mL of neat alcohol and 30 mg of photocatalyst, 3. stirrer bar, 4. magnetic stirrer, 5. two 15W UV lamps in a lamp housing, 6.electric fan for air circulation, 7. outlet for electric wire and air circulation, 8. home-made wooden box enclosure.

Fig. S1 DRIFTS spectra for CO adsorbed on 3% Pt/NaTNTs and 3% Pt/CsTNTs. The blue, green and red curves are deconvolution peaks for CO adsorbed on the PtO_x , Pt^0 and Pt^{δ} sites, respectively. The dash purple curve is the sum of the three component peaks, and the solid black curve is the collected spectra.