## **Supporting Information**

# Anthacene and pyrene tricyanofurane derivatives for second-order non-linear optics

Miquel Planells,<sup>a</sup> Maddalena Pizzotti,<sup>b</sup> Gary S. Nichol,<sup>a</sup> Francesca Tessore,<sup>b</sup> and Neil Robertson<sup>a,\*</sup>

<sup>a</sup>EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, U.K.

<sup>b</sup>Dipartimento di Chimica dell'Università degli Studi di Milano, Unità di Ricerca dell'INSTM, via C. Golgi 19, 20133 Milano, ITALY

### **TABLE OF CONTENTS**

Supporting information figures:

| - <sup>1</sup> H and <sup>13</sup> C NMR spectra of Anth_TCF | - S2 - |
|--------------------------------------------------------------|--------|
| - FT-IR spectra of Anth_TCF and Pyr_TCF                      | - S3 - |
| - Cyclic voltammetries of Anth_TCF and Pyr_TCF               | - S3 - |

Supporting information tables:

| - TD-DFT energies and compositions | for Anth_TCF and Pyr_TCF | - S4 - |
|------------------------------------|--------------------------|--------|
|------------------------------------|--------------------------|--------|

#### **Supporting Information Figures**



Figure S1. <sup>1</sup>H-NMR spectrum of Anth\_TCF.



Figure S2. <sup>13</sup>C-NMR spectrum of Anth\_TCF.



Figure S3. FT-IR spectra of Anth\_TCF (*left*) and Pyr\_TCF (*right*).



Figure S4. Cyclic voltammetry traces at different scan rates of Anth\_TCF (*left*) and Pyr\_TCF (*right*), where an irreversible reduction trace can be observed.

#### **Supporting Information Tables**

| Compound | State | <b>Composition</b> <sup>a</sup> |       | $\Delta E (eV / nm)^b$ | $f^{c}$ |
|----------|-------|---------------------------------|-------|------------------------|---------|
|          | 1     | HOMO → LUMO                     | 100 % | 2.0479 / 605.41        | 0.6307  |
|          | 2     | HOMO−1 → LUMO                   | 67 %  | 3.0413 / 407.67        | 0 2020  |
|          | 2     | $HOMO \rightarrow LUMO+1$       | 32 %  |                        | 0.2920  |
|          | 2     | $HOMO-2 \rightarrow LUMO$       | 95 %  | 2 2140 / 285 76        | 0.0641  |
|          | 3     | $HOMO \rightarrow LUMO+3$       | 4 %   | 3.2140/385.70          | 0.0641  |
| Anth_TCF | 4     | $HOMO-1 \rightarrow LUMO$       | 30 %  | 2 2507 / 201 41        | 0.0597  |
|          |       | $HOMO \rightarrow LUMO+1$       | 65 %  | 5.2307 / 381.41        | 0.0387  |
|          | 5     | $HOMO-4 \rightarrow LUMO$       | 98 %  | 3.5190 / 352.33        | 0.0109  |
|          |       | $HOMO-4 \rightarrow LUMO$       | 89 %  |                        |         |
|          | 6     | HOMO-1 $\rightarrow$ LUMO+2     | 2 %   | 3.8862 / 319.04        | 0.2748  |
|          |       | $HOMO \rightarrow LUMO+2$       | 6 %   |                        |         |
|          | 1     | HOMO → LUMO                     | 100 % | 2.1996 / 563.66        | 1.4233  |
| Pyr_TCF  | 2     | $HOMO-2 \rightarrow LUMO$       | 10 %  |                        |         |
|          |       | $HOMO-1 \rightarrow LUMO$       | 85 %  | 2.8854 / 429.69        | 0.2564  |
|          |       | $HOMO \rightarrow LUMO+1$       | 3 %   |                        |         |
|          |       | $HOMO-2 \rightarrow LUMO$       | 84%   |                        |         |
|          | 3     | HOMO−1 → LUMO                   | 9 %   | 3.1111/ 398.52         | 0.0467  |
|          |       | $HOMO \rightarrow LUMO+1$       | 2 %   |                        |         |
|          | 4     | $HOMO-3 \rightarrow LUMO$       | 95 %  | 3.5225 / 351.98        | 0.0790  |
|          |       | $HOMO-4 \rightarrow LUMO$       | 21 %  |                        |         |
|          | 5     | $HOMO \rightarrow LUMO+1$       | 73 %  | 3.6214 / 342.36        | 0.0833  |
|          |       | HOMO−1 → LUMO                   | 2 %   |                        |         |
|          | 6     | $HOMO-4 \rightarrow LUMO$       | 68 %  |                        |         |
|          |       | HOMO →LUMO+1                    | 16 %  |                        |         |
|          |       | $HOMO-1 \rightarrow LUMO$       | 2 %   | 3 7915 / 376 75        | 0 13/7  |
|          | 0     | $HOMO-1 \rightarrow LUMO+2$     | 2 %   | 5.19451 520.15         | 0.154/  |
|          |       | $HOMO \rightarrow LUMO+2$       | 2 %   |                        |         |
|          |       | $HOMO \rightarrow LUMO+3$       | 4 %   |                        |         |

**Table S1.** TD-DFT calculated energies and compositions of the first six singlet electronic transitions of**Anth\_TCF** and **Pyr\_TCF** at B3LYP/6-31G(d) level of theory.

<sup>*a*</sup>Compositions of electronic transitions are expressed in terms of contributing excitations between ground state Kohn–Sham molecular orbitals. <sup>*b*</sup>Transition energy from the ground state to the excited state. <sup>*c*</sup>Oscillator strength.