Supporting Information

"Tschitschibabin type Biradicals": Benzenoid or Quinoid?

Prince Ravat, and Martin Baumgarten*
Max Planck Institute for Polymer Research, Ackermannweg-10, D-55128, Mainz, Germany baumgart@mpip-mainz.mpg.de

General methods:

EPR spectra were recorded in diluted and oxygen-free solutions of toluene with the concentration of 10^{-4} molar unless otherwise stated by using a Bruker X-band spectrometer ESP300 E, equipped with an NMR gauss meter (Bruker ER035), a frequency counter (Bruker ER 041 XK) and a variable temperature control continuous flow N_{2} cryostat (Bruker B-VT 2000). UV-Vis spectra were recorded in toluene solutions with Perkin Elmer Spectrometer (UV/Vis/NIR Lambda 900) by using 1 cm optical-path quartz cell at room temperature. Mass spectra were obtained on FD-MS, VG Instruments ZAB-2 mass spectrometer. The X-ray crystallographic data for the biradical was collected on Nonius Kappa CCD ($\mathrm{Mo}-\mathrm{K} \alpha$) diffractometer equipped with graphite mono chromator. The structures were solved by direct method (SHELXS) and refined by a full-matrix least-squares procedure.

Synthetic details:

All reagents and chemicals were purchased from Aldrich and Alfa Aesar used for synthesis without further purification unless otherwise specified. 2,7-Diiodo-4,5,9,10-tetramethoxypyrene and t-BuNO were synthesized according to literature procedures. ${ }^{32,33,48}$

N, \mathbf{N}^{\prime}-([1,1'-Biphenyl]-4,4'-diyl)bis(N-oxy-tert-butylamine) (BPNO):

To a solution of 4,4'-dibromo-1,1'-biphenyl ($200 \mathrm{mg}, 0.64 \mathrm{mmol}$) in $5 \mathrm{ml} \mathrm{THF}, 2.2$ equivalent 1.6 $\mathrm{M} n$ - BuLi hexane solution was added drop wise at $-78^{\circ} \mathrm{C}$ and stirred for 1 hour at the same temperature. The mixture was gradually warmed to room temperature over the period of 2 hour and further stirred for 30 min . To the resulting mixture the solution of 2-methyl-2-nitrosopropane (t - BuNO) dimer (3 equivalents) in 2 ml THF was added drop wise at $-78^{\circ} \mathrm{C}$, continued stirring for 2 hour and warmed to room temperature. The reaction mixture was hydrolyzed with aqueous ammonium chloride. Organic layer was separated, washed with water and brine and dried over MgSO_{4}. Solvent was removed under vacuum and residue used as it is for next step without any purification. To the slurry of crude product in 20 ml

DCM, 300 mg of $\mathrm{Ag}_{2} \mathrm{O}$ was added and stirred for 3 hour under argon. The reaction mixture was filtered through celite and the solvent was evaporated, the residue purified over alumina column using hexane:ethylacetate (100:10) as eluent. Yield 60 mg of BPNO (29% in two steps). MS-FD= 325.9 (100 $\%), \lambda_{\max }\left(\varepsilon, \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right) 322\left(1.04 \mathrm{X} \mathrm{10}^{4}\right)$, $476\left(4.2 \mathrm{X} \mathrm{10}^{4}\right), 649(1171)$. EPR ($353 \mathrm{~K}, 10^{-4} \mathrm{M}$ in toluene) : five lines, $\mathrm{g}_{\text {iso }}=2.0067, a_{N} / 2=6.250 \mathrm{G}$.

N,N'-([1,1':4',1''-Terphenyl]-4,4'-diyl)bis(N-oxy-tert-butylamine) (TPNO):

To a solution of 4,4"-dibromo-1, $1^{\prime}: 4^{\prime}, 1$ "-terphenyl ($100 \mathrm{mg}, 0.26 \mathrm{mmol}$) in 40 ml THF, 2.2 equivalent $1.6 \mathrm{M} n$-BuLi hexane solution was added drop wise at $-78{ }^{\circ} \mathrm{C}$ stirred for 1 hour at same temperature. The mixture was gradually warmed to room temperature over the period of 2 hour and further stirred for 30 min . To the resulting mixture the solution of 2-methyl-2-nitrosopropane (t-BuNO) dimer (3 equivalents) in 2 ml THF was added drop wise at $-78^{\circ} \mathrm{C}$, continued stirring for 2 hour and warmed to room temperature. The reaction mixture was hydrolyzed with aqueous ammonium chloride. Organic layer was separated, washed with water and brine and dried over MgSO_{4}. Solvent was removed under vacuum and residue used as it is for next step without any purification. To the slurry of crude product in 40 ml DCM, 200 mg of $\mathrm{Ag}_{2} \mathrm{O}$ was added and stirred for 3 hour under argon. The mixture was filtered through celite and solvent evaporated, the residue was purified over alumina column using hexane:ethylacetate (100:25) as eluent. Yield 25 mg of TPNO (24% in two steps). MS-FD $=402.4$ (100%). $\lambda_{\text {max }}\left(\varepsilon\right.$, mol $^{-1} \mathrm{~cm}^{-1}$) 349 (3.4×10^{4}). EPR ($298 \mathrm{~K}, 10^{-4} \mathrm{M}$ in toluene): five lines, $\mathrm{g}_{\text {iso }}=2.0065$, $a_{\mathrm{N}} / 2=6.225 \mathrm{G}$.

N,N'-((4,5,9,10-Tetramethoxypyrene-2,7-diyl)bis(4,1-phenylene))bis(N-oxy-tert-butylamine) (BPTMP):

To the oven dried Schlenk flask 2,7-diiodo-4,5,9,10-tetramethoxypyrene ($100 \mathrm{mg}, 0.17 \mathrm{mmol}$) and 4-(tert-butyl(tert-butyldimethylsilyloxy)-amino)phenylboronic acid ($140 \mathrm{mg}, 2.5$ equivalents) were dissolved in 16 ml toluene. To the resulting mixture aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(83 \mathrm{mg}\right.$ in $\left.6 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}\right)$ added and mixture was bubbled with argon for 30 min , then $5 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ added and the resulting solution heated at $83{ }^{\circ} \mathrm{C}$ for 20 hour. The reaction mixture cooled to room temperature and washed with water. The organic layer was separated, and solvent was removed under vacuum. The crude intermediate product 4 was obtained in quantitative yield characterized by FD mass and used as it is for next step. MSFD $\left(8 \mathrm{kV}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{m} / \mathrm{z}$: found 877.3 (100%).

The crude product 4 was dissolved in 15 ml THF. The conc. $\mathrm{HCl}(1.2 \mathrm{ml})$ was added and reaction mixture stirred at room temperature for overnight under argon. The reaction mixture poured into 10 ml $\mathrm{H}_{2} 0$ and the precipitate formed were filtered, dried and used immediately for next step. The precipitate and excess of $\mathrm{Ag}_{2} \mathrm{O}(200 \mathrm{mg})$ were dispersed in 30 ml DCM and stirred at room temperature for 3 hour under argon. The solution passed through the celite, and the solvent was removed under vacuum. The crude product was purified by column chromatography using 1:1 (hexane:DCM) as eluent. Yield 40 mg (39% in three steps). MS-FD $\left(8 \mathrm{kV}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) m/z: found 646.6 (100 \%) . $\lambda_{\text {max }}\left(\varepsilon, \mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right.$) 357 (8.6 X 10^{4}). EPR ($298 \mathrm{~K}, 10^{-4} \mathrm{M}$ in toluene): five lines, $\mathrm{g}_{\text {iso }}=2.0058, a_{N} / 2=5.948 \mathrm{G}$.

Table S1: Crystallographic table.

	BPNO	TPNO	BPTMP
CCDC No.	1001620	1001622	1001621
Formula	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{1} \mathrm{O}_{1}$	$\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\mathrm{C}_{40} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6}$
Formula Weight	163.22	402.54	646.78
Crystal System	Monoclinic	Monoclinic	Monoclinic
Space group	P21/a, (No. 14)	P21/a, (No. 14)	C2/c, (No. 15)
a,b,c/Å	$\begin{aligned} & 8.614(5), 9.107(7) \\ & 11.338(9) \end{aligned}$	$\begin{aligned} & 8.840(2), 8.988(3) \\ & 13.346(4) \end{aligned}$	$\begin{aligned} & 18.130(8), 11.229(3), \\ & 17.613(8) \end{aligned}$
$\alpha, \beta, \gamma /{ }^{\circ}$	90, 101.9 (4), 90	90, 94.8(2), 90	90, 113.4(1), 90
V / \AA^{3}	870.21(11)	1056.79(5)	3290.6(2)
Z	4	2	4
D (calc) $\left./ \mathrm{g}^{-1} \mathrm{~cm}^{3}\right]$	1.246	1.265	1.306
$\mathrm{Mu}(\mathrm{MoKa}) / \mathrm{mm}^{-1}$	0.081	0.080	0.088
F(000)	352	432	1376
Crystal Size/mm	0.09 x 0.16 x 0.41	$0.09 \times 0.29 \times 0.42$	$0.13 \times 0.20 \times 0.39$
Temperature/K	120	120	120
Radiation/ \AA, MoK α	0.71073	0.71073	0.71073
Theta Min-Max/ ${ }^{\circ}$	3.5, 27.6	3.5, 30.0	2.7, 28.7
Dataset	-11: $10 ; 0: 11 ; 0: 14$	-12: $11 ;-12: 12 ;-18: 18$	$\begin{aligned} & -24: 24 ;-15: 14 ;-19: \\ & 23 \end{aligned}$
Tot., Uniq. Data, R(int)	6606, 1987, 0.056	13179, 3090, 0.055	13979, 4234, 0.088
Observed data $[\mathrm{I}>2.0$ sigma(I)]	1764	2464	3411
Nref, Npar	1764, 109	2304, 136	3137, 218
R, wR2, S	0.0577, 0.4001, 0.84	0.0505, 0.0643, 1.07	$0.0664,0.1024,0.91$
Min. and Max. Resd. Dens./eAng ${ }^{-3}$	-0.42, 0.49	-0.33, 0.31	-0.50, 0.54

Figure S1: ORTEP diagram, 50 \% probability temperature ellipsoid plot.

Figure S2: Black: Experimental EPR spectrum of BPNO at 353 K . Red: Simulated spectrum for BPNO with 7.5\% contribution from monoradical species.

