Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

Supporting Information

Epitope mapping of imidazolium cation in ionic liquid-protein interactions unveils the

balance between hydrophobicity and electrostatics towards protein destabilisation

Micael Silva^a, Angelo Miguel Figueiredo^{a*}, Eurico J. Cabrita^{a*}

^a REQUIMTE, CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Monte de Caparica, Portugal

CONTENTS

STD-NMR experiments

Figure S1 - [C₄dmim][Cl]

Figure S2 - [C₃Omim][Cl]

Figure S3 - [C₂OHmim][Cl]

Figure S4 - [C₄mim][dca]

Figure S5 - [C₂mim][dca]

Figure S6 - [C₂OHmim][dca]

Competition STD-NMR experiments

Figure S7 - [C₂mim][Cl] vs. [C₄mim][Cl]

Figure S8 - [C₂mim][Cl] vs. [C₂OHmim][Cl]

Anion-protein interaction - IL titrations with HSA followed by ³⁵Cl NMR

Figure S10 - [C₂mim][Cl]

Figure S11 - [C₄mim][Cl]

Figure S12 - [C₄dmim][Cl]

Figure S13 - [C₂mim][Cl]

Figure S14 - [C₄dmim][Cl]

Figure S15 - [C₃Omim][Cl]

Figure S16 - [C₂OHmim][Cl]

Table S1 – NMR determined self-diffusion coefficient value of HDO in IL

solutions with different HSA concentrations

STD-NMR experiments

Figure S1 – Top – STD NMR spectrum of 5 mM [C₄dmim][Cl] with 50 μ M human HSA and relative STD NMR intensities in percentage; Bottom – Reference spectrum (off resonance) with resonance assignments.

Figure S2 – Top – STD NMR spectrum of 5 mM [C₃Omim][Cl] with 50 μ M human HSA and relative STD NMR intensities in percentage; Bottom – Reference spectrum (off resonance) with resonance assignments. H2 exchanges with D₂O over time and therefore its STD response can not be accurately determined.

Figure S3 – Top – STD NMR spectrum of 5 mM [C₂OHmim][Cl] with 50 μ M human HSA and relative STD NMR intensities in percentage; Bottom – Reference spectrum (off resonance) with resonance assignments.

Figure S4 – Top – STD NMR spectrum of 5 mM [C_4 mim][dca] with 50 μ M human HSA and relative STD NMR intensities in percentage; Bottom – Reference spectrum (off resonance) with resonance assignments. H2 exchanges with D₂O over time and therefore its STD response can not be accurately determined.

Figure S5 – Top – STD NMR spectrum of 5 mM [C_2 mim][dca] with 50 μ M human HSA and relative STD NMR intensities in percentage; Bottom – Reference spectrum (off resonance) with resonance assignments. H2 exchanges with D₂O over time and therefore its STD response can not be accurately determined.

Figure S6 – Top – STD NMR spectrum of 5 mM [C_3 Omim][Cl] with 50 μ M human HSA and relative STD NMR intensities in percentage; Bottom – Reference spectrum (off resonance) with resonance assignments.

Figure S7 – Top – STD NMR spectrum of 2.5 mM [C_2 mim][Cl] and [C_2 OHmim][Cl] with 50 μ M human HSA and relative STD NMR intensities in percentage; Bottom – Reference spectrum (off resonance) with resonance assignments.

Figure S8 – Top – STD NMR spectrum of 2.5 mM [C_2 mim][Cl] and [C_4 mim][Cl] with 50 μ M human HSA and relative STD NMR intensities in percentage; Bottom – Reference spectrum (off resonance) with resonance assignments.

Anion-protein interaction - IL titrations with HSA followed by ³⁵Cl NMR

[C₂mim][Cl]

Figure S9 – Effect of HSA addition on the ³⁵Cl resonance of a sample containing 5 mM [C₂mim][Cl] in D₂O (500 μ L). Increased HSA concentration was achieved through the addition of small volumes of 50 μ M HSA, 5 mM [C₂mim][Cl] to maintain the total concentration of chlorine constant. From bottom to top: volumes added in μ L (HSA concentration in μ M): 0 (0), 10 (0.98), 20 (1.92), 30 (2.83), 50 (4.55), 75 (6.52), 100 (8.33), 150 (11.54), 225 (15.52), 300 (18.75), and 360 (20.93). Top spectrum: 50 μ M HSA, 5 mM [C₂mim][Cl].

Figure S10 – Effect of HSA addition on the ³⁵Cl resonance of a sample containing 5 mM [C₄mim][Cl] in D₂O (500 µL). Increased HSA concentration was achieved through the addition of small volumes of 50 µM HSA, 5 mM [C₄mim][Cl] to maintain the total concentration of chlorine constant. From bottom to top: volumes added in µL (HSA concentration in µM): 0 (0), 10 (0.98), 20 (1.92), 30 (2.83), 50 (4.55), 100 (8.33), 150 (11.54), 225 (15.52), 300 (18.75), and 385 (21.75). Top spectrum: 50 µM HSA, 5 mM [C₄mim][Cl].

Figure S11 – Effect of HSA addition on the ³⁵Cl resonance of a sample containing 5 mM [C₄dmim][Cl] in D₂O (500 μ L). Increased HSA concentration was achieved through the addition of small volumes of 50 μ M HSA, 5 mM [C₄dmim][Cl] to maintain the total concentration of chlorine constant. From bottom to top: volumes added in μ L (HSA concentration in μ M): 0 (0), 10 (0.98), 20 (1.92), 30 (2.83), 50 (4.55), 75 (6.52), 100 (8.33), 150 (11.54), 225 (15.52), 300 (18.75), and 360 (20.93). Top spectrum: 50 μ M HSA, 5 mM [C₄dmim][Cl].

Figure S12 – Effect of HSA addition on the ³⁵Cl resonance of a sample containing 5 mM [C₃Omim][Cl] in D₂O (500 μ L). Increased HSA concentration was achieved through the addition of small volumes of 50 μ M HSA, 5 mM [C₃Omim][Cl] to maintain the total concentration of chlorine constant. From bottom to top: volumes added in μ L (HSA concentration in μ M): 0 (0), 10 (0.98), 20 (1.92), 30 (2.83), 50 (4.55), 75 (6.52), 100 (8.33), 150 (11.54), 225 (15.52), 300 (18.75), and 360 (20.93). Top spectrum: 50 μ M HSA, 5 mM [C₃Omim][Cl].

Figure S13 – Effect of HSA addition on the ³⁵Cl resonance of a sample containing 5 mM [C₂OHmim][Cl] in D₂O (500 μ L). Increased HSA concentration was achieved through the addition of small volumes of 50 μ M HSA, 5 mM [C₃Omim][Cl] to maintain the total concentration of chlorine constant. From bottom to top: volumes added in μ L (HSA concentration in μ M): 0 (0), 10 (0.98), 20 (1.92), 30 (2.83), 50 (4.55), 75 (6.52), 100 (8.33), 150 (11.54), 225 (15.52), 300 (18.75), and 360 (20.93). Top spectrum: 50 μ M HSA, 5 mM [C₂OHmim][Cl].

	$D(\times 10^{-9} m^2/s)$		
	0 µM HSA	21.75 µM	50 µM
[C ₄ mim][Cl]	1.68 ± 0.01	1.68 ± 0.01	1.67 ± 0.01
[C ₄ dmim][Cl]	1.67 ± 0.01	1.68 ± 0.01	1.67 ± 0.01
[C ₂ mim][Cl]	1.69 ± 0.01	1.68 ± 0.01	1.65 ± 0.01
[C ₃ Omim][Cl]	1.69 ± 0.01	1.68 ± 0.01	1.66 ± 0.01
[C ₂ OHmim][Cl]	1.69 ± 0.01	1.68 ± 0.01	1.68 ± 0.01

Table S1 - NMR determined self-diffusion coefficient of HDO in IL solutions with differentHSA concentrations