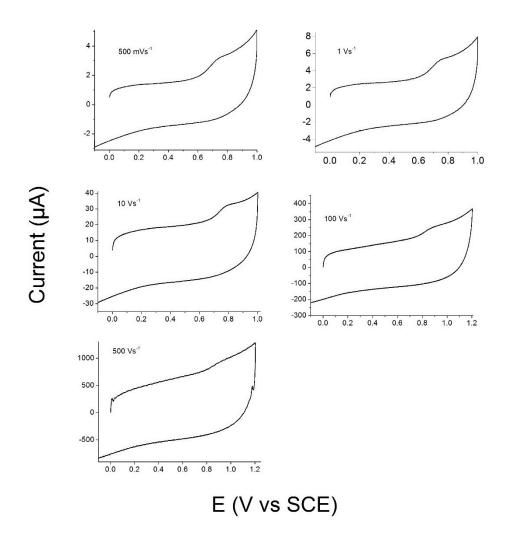
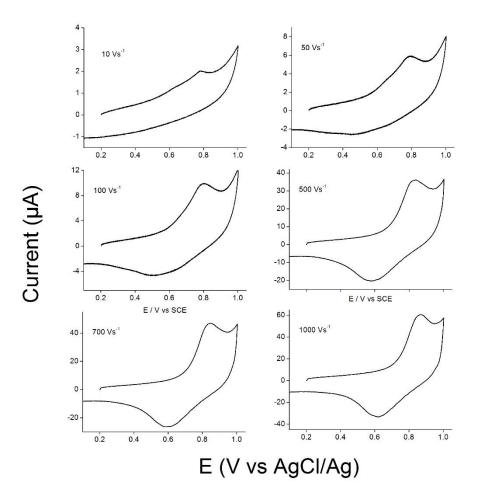
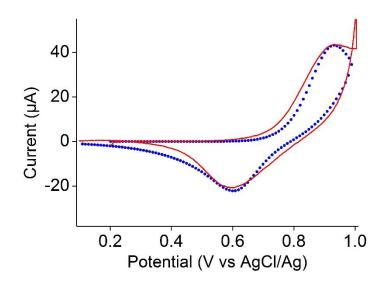

How protein structure affects redox reactivity: example of Human centrin 2.


Abdeslam Et Taouil, Emilie Brun, Patricia Duchambon, Yves Blouquit, Manon Gilles, Emmanuel Maisonhaute^{*}, Cécile Sicard-Roselli^{*}


Figure S1. a) Hscen 2 and Tyrosine concentration evolution as a function of the irradiation dose determined by liquid chromatography. Yield determined: $G(_{-Hscen2}) = 0.57 \pm 0.05 \mu mol.J^{-1} G(_{-Tyr}) = 0.27 \pm 0.04 \mu molJ^{-1}$. b) Dimer concentration evolution as a function of the irradiation dose determined by liquid chromatography. Yield determined: $G_{(Hscen2Dimer)} = 0.26 \pm 0.02 \mu molJ^{-1}$, $G_{(TyrDimer)} = 0.046 \pm 0.002 \mu molJ^{-1}$.


Figures S2. Cyclic voltammograms of Hscen2 (0.2 mM) in 0.2 M NaCl aqueous solution at different scan rates onto a 125 μ m diameter gold electrode.

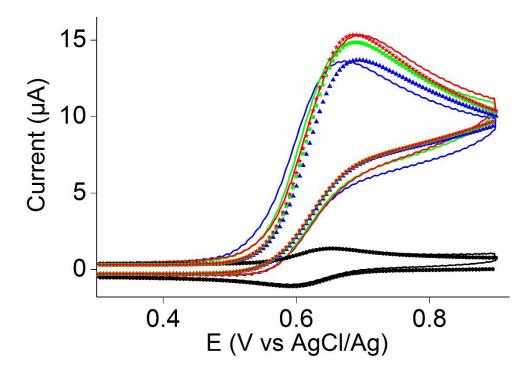

Figure S3. Cyclic voltammograms of 0.2 mM tyrosine in 0.5 M LiNO₃ aqueous solution on a 1 mm diameter glassy carbon electrode at different scan rates.

Figure S4. Cyclic voltammograms of Δ 25 Human centrin 2 (0.2 mM) in 0.2 M NaCl aqueous solution at different scan rates onto a 125 µm diameter gold electrode.

Figure S5. Experimental (solid line) and simulated cyclic voltammograms (dots) of $\Delta 25$ Human Centrin 2 (0.2 mM) in 0.2 M NaCl aqueous solution at 1000 Vs⁻¹ onto a 125 µm diameter gold electrode. The background current is subtracted. Simulation parameters: $E^0 = 0.765$ V vs AgCl/Ag diffusion coefficient $D_{\Delta 25} = 8.2 \times 10^{-7}$ cm²s⁻¹, $k_{dim} = 1.45 \times 10^4$ Lmol⁻¹s⁻¹, layer thickness = 180 nm, [$\Delta 25$] = 59 mM. pH = 7.5.

Figure S6. Redox catalysis of 0.1 mM tyrosine in the presence of 11 μ M Os(bpy)²⁺ (E°_{Os(bpy)2/3+} = 623 mV/AgCl/Ag; E°_{Tyrosine} = 730 mV/AgCl/Ag; D_{Os(bpy)2/3+} = 6.10⁻⁶ cm².s⁻¹; D_{Tyrosine} = 4.10⁻⁵ cm².s⁻¹; k_{dimerization} = 10⁷ M⁻¹.s⁻¹; K_{eq} = 1.5.10⁵). Phosphate buffer concentrations of 10 (blue), 50 (green) and 100 (red) mM, k_{app} were found to be 3.5x10⁶, 4.5x10⁶ and 5.1x10⁶ M⁻¹.s⁻¹, respectively. The fits are performed taking a diffusion coefficient $D_{Tyrosine}$ of 4x10⁻⁵ cm²s⁻¹ in line with Fecenko *et al.*¹ Such high value nevertheless seems overestimated in comparison with the one published recently by Wiegang *et al.*² Nevertheless, introducing a larger k_{app} and a smaller $D_{tyrosine}$ did not lead to a correct fit since then the system shifted to the "total catalysis" zone as described by Saveant.³ Revisiting the model of Fecenko *et al.* was however beyond the scope of this study.

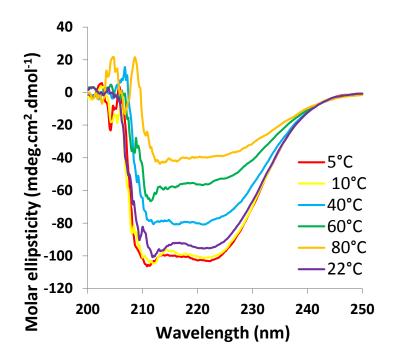


Figure S7. Hscen2 circular dichroism signal evolution as a function of the temperature.

References.

- 1. C. J. Fecenko, T. J. Meyer and H. H. Thorp, J. Am. Chem. Soc., 2006, 128, 11020-11021.
- 2. Z. L. Wang, H. Kriegs and S. Wiegand, J. Phys. Chem. B, 2012, 116, 7463-7469.
- 3. J.-M. Saveant, *Elements Molecular and Biomolecular Electrochemistry*, John Wiley and Son, 2002.