Supporting Information

Photocontrol of Luminescent Inorganic Nanocystals via an Organic Molecular Switch.

Julie Massaad, Yannick Coppel, Michel Sliwa, Myrtil L. Kahn, Christophe Coudret,

Fabienne Gauffre

SI-1: Irreversible isomerization:

Scheme of the irreversible diarylethene isomerization.

SI-2: Comparison of the dye's absolute redox potentials with the ZnO LUMO and HOMO levels

The diacid's first oxidation redox couple of dithienylethene have been measured for both photoisomers: closed form $E^{\circ}(DTE-c^+/DTE-c) = 0.8 \text{ V } vs$ SCE and open form $E^{\circ}(DTE-o^+/DTE-o) = 1.4 \text{ V } vs$ SCE.¹ Thus, the closed form is thermodynamically more prone to undergo oxidation than the open one.

compound	$E^{\circ}_{vs SCE}$ (DTE/DTE-)	E° _{vs SCE} (DTE+/DTE)	Level LUMO	Level HOMO	ref
DTE-o	-1.91	+1.4	-2.52 eV	-5.9 eV	2
DTE-c	-	+0.8	-2.3 eV*	-5.2 eV	2
ZnO			-4.35 (VB)	-7.72 (CB)	3
V_O '				-6.3eV	4

Table : absolute redox couples of the diacid DTE o/c and levels of ZnO (referenced to vacuum). * value estimated from the optical gap

SI-3: NOESY spectra

NOESY (mixing time 100ms) spectra of ZnO Ncs in presence of HDA/DTE-0 in a ratio of 2/1 Box highlights the transferred NOE cross-peaks between the α -CH₂ protons with the other CH₂ protons of HDA. Arrow indicates the transferred NOE cross-peak between the thiophene proton and the closest cyclopentyl proton of DTE-0.

SI-4: Calculation of the diffusion-controlled bimolecular encounter rate using the Smoluchowski equation

$$k_{diff} = 4\pi N (R_{Nc} + R_{DTE}) (D_{Nc} + D_{DTE})$$

where R_{Nc} and R_{DTE} ; D_{Nc} and D_{DTE} , stand for the molecular radii and the diffusion coefficients determined by NMR experiments of the Ncs and DTE respectively (expressed in dm and dm².s⁻¹ to keep the units corrects with the rate constant in mol⁻¹.L.s⁻¹). Taking crudely $R_{Nc} \sim 7nm$; $R_{DTE} \sim 0.5nm$, $D_{Nc} \sim 0.7 \times 10^{-10} \text{ m}^2.\text{s}^{-1}$ and $D_{DTE} \sim 8 \times 10^{-10} \text{ m}^2.\text{s}^{-1}$ we find $k_{diff} \sim 5.10^{10} M^{-1}.\text{s}^{-1}$.

SI-5: Determination of the apparent association constant K_a between ZnO and DTE

The apparent adsorption constants for DTE-o and DTE-c are determined from the slope of the best linear fit of I_0^{-I} . K_a values of 0.27±0.02 10⁶ M⁻¹ and 4.2±0.2 10⁶ M⁻¹ were found for DTE-o and DTE-c, respectively.

Dependence of $I/(I_0-I)$ on the reciprocal concentration of DTE. (a) Open isomer. (b) Closed isomer after correction for the open isomer.

SI-6: Förster distance for the DTE-c/ZnO pair

A) UV-vis absorption spectra of THF solutions of DTE-o (2 e-5 M) (purple), of DTE-c-o (red), ZnO Ncs (0.52 mM) (green), and emission spectrum of ZnO Ncs ($\lambda_{exc} = 365$ nm) (purple). B) Spectral overlap between normalized DTE-c-o absorption- and ZnO-Ncs emission spectra.

The Förster radius (R_0) is given by the following relation:

$$R_0 = 0.211 * \left[\kappa^2 n^{-4} Q_D J\right]^{1/6}$$

where κ^2 is a geometrical parameter describing the relative orientation of the transition dipole moments ($\kappa^2 = 2/3$ for a random orientation), *n* the medium's refractive index, Q_D the quantum yield of the nanoparticle (energy donor) emission and *J*, the overlap integral: ⁵

$$J = \frac{\int_{0}^{\infty} F_{D}(\lambda)\varepsilon_{A}\lambda^{4} d\lambda}{\int_{0}^{\infty} F_{D}(\lambda)d\lambda}$$

With:

- $F_D(\lambda)$: fluorescence intensity of the nanoparticles (dimensionless).
- ε_A : the molar extinction coefficient of the DTE acceptor (M⁻¹ cm⁻¹)

We have previously measured $Q_D = 0.28$ by comparison with quinine sulfate ($Q_D^{ref} = 0.55$)

- (1) Massaad, J.; Micheau, J.-C.; Coudret, C.; Sanchez, R.; Guirado, G.; Delbaere, S. *Chemistry* **2012**, *18*, 6568.
- (2) Massaad, J.; Micheau, J.-C.; Coudret, C.; Serpentini, C. L.; Guirado, G. *Chemistry* **2013**, *19*, 12435.
- (3) Kim, H.; Jin, C.; Park, S.; Kwon, Y.; Lee, S.; Lee, C. *Phys. Scr.* **2012**, *T149*, 014052.
- (4) Lima, S.; Sigoli, F.; Jafelicci Jr, M.; Davolos, M. Int. J. Inorg. Mater. 2001, 3, 749.
- (5) Valeur, B. *Molecular Fluorescence: Principles and Applications*; Wiley-VCH Verlag, W., Ed.; 2001.