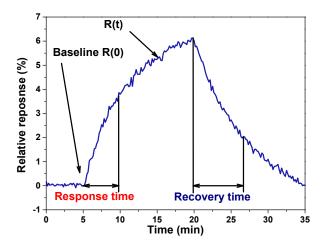
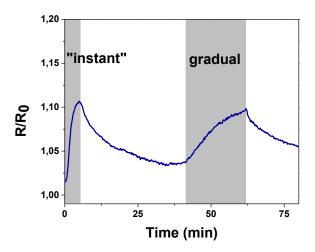
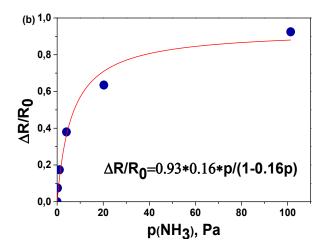
Supplementary Information

Backside fluorine-functionalized graphene layer for ammonia detection

M.V. Katkov^{1,2}, V.I. Sysoev¹, A.V. Gusel'nikov¹, I.P. Asanov^{1,2}, L.G. Bulusheva^{1,2}, A.V. Okotrub^{1,2}

¹Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation

²Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russian Federation

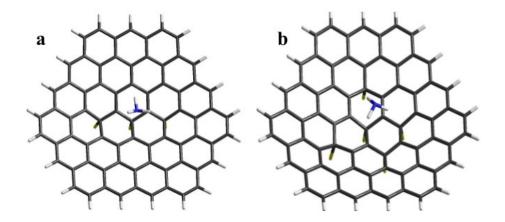

Figure S1. The main stages of the sensor interaction with an analyzing gas.

Figure S2. Response to 1 % of NH₃: first cycle – the sensor placed directly into the atmosphere of ammonia, second cycle – the necessary concentration achieved in a flow reactor.

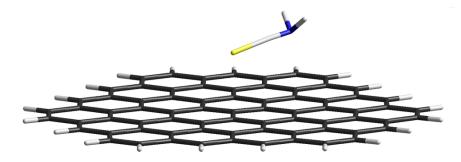

Figure S3. Dependence of sensor response of CVD-graphene on the NH₃ pressure. The curve was plotted using the experimental data presented in Fig. 2(a) in Ref. [F. Yavari, E. Castillio, H. Gullapalli, P.M. Ajayan and N. Koratkar, *Appl. Phys. Lett.*, 2012, **100**, 203120].

Figure S4. Geometry of models $C_{73}F_3H_{21}$ (a) and $C_{73}F_5H_{21}$ (b) showing less preferable mutual orientation of NH₃ molecule relative to fluorinated graphene surface. In the model, $C_{73}F_3H_{21}$ the molecule approaches by N and H atoms – $C_{73}F_3H_{21}$ (NH₃) configuration in Table S1; in the model $C_{73}F_5H_{21}$, the molecule approaches by three hydrogen atoms – $C_{73}F_5H_{21}(H_3N)$ configuration in Table S1.

model	$C_{73}FH_{21}$	$C_{73}\mathbf{F_3}H_{21}(H_3N)$	$C_{73}\mathbf{F_3}H_{21}(NH_3)$	$C_{73}F_{5}H_{21}(H_{3}N)$	$C_{73}\mathbf{F}_{5}H_{21}(\mathrm{NH}_{3})$
distance	2.86 (C-H ₁) 2.88 (C-H ₂) 2.90 (C-H ₃)	2.66 (C-H ₁) 2.70 (C-H ₂) 2.87 (C-H ₃)	2.96 (C-H) 2.99 (C-N)	3.00 (C-H ₂)	2.93 (C ₁ -H ₁) 2.94 (C ₂ -H ₁) 3.06 (C ₁ -H ₂)

Table S1 The distance between atoms in a molecule and the nearest surface atoms (Å) for "hydrogen" (H_3N) or "nitrogen" (NH_3) orientation of the molecule.

Figure S5. Charge-transfer complex of graphene and F-HNH₂ species obtained as the result of interaction of NH₃ molecule with fluorine atom in C₇₃FH₂₁ model. The shortest C–F distance is 2.4 Å. The length of the F–H bond is 1.7 Å that corresponds to hydrogen bonding.