Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014



**Fig. ESI-1** Normalized EXAFS spectra nitrogen doped ZnO samples measured at Zn K edge along with ZnO as reference. Normalized EXAFS spectra for nitrogen doped ZnO samples are measured at Zn K edge along with bulk ZnO as reference and the corresponding result is given in fig. 1. The edge of lattice Zn shows +2 oxidation state and wurtzite structure as similar that of bulk ZnO.

## ESI-2: Analysis of local structural parameters.

Table-ESI-1: Local structural parameters for ZnO1-xNx (ZU series) evaluated by EXAFS measurements at Zn K edge.

| Path  | Parameter  | ZnO bulk | ZU5      | ZU1       |
|-------|------------|----------|----------|-----------|
|       |            |          | (N=8.6%) | (N=15.1%) |
| Zn-O  | R (Å)      | 1.98     | 1.95     | 1.93      |
|       | Ν          | 4        | 4        | 3.68      |
|       | $\sigma^2$ |          | 0.009    | 0.009     |
| Zn-Zn | R (Å)      | 3.20     | 3.12     | 3.09      |
|       | N (6)      | 6        | 6        | 6         |
|       | $\sigma^2$ |          | 0.011    | 0.009     |
| Zn-Zn | R (Å)      | 3.25     | 3.21     | 3.20      |
|       | Ν          |          | 5.4      | 6.6       |
|       | $\sigma^2$ |          | 0.006    | 0.005     |

Nitrogen incorporation is accompanied with growing zinc oxo clusters at the expense of oxygen vacancies. Therefore, bond length parameters are varied with the introduction of N retaining the lattice structure. The bond length of Zn-O decreases with the introduction of nitrogen because of the fact of expected lattice contraction.