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FIG. 1: (color online). The symmetrized Kullback-Leibler divergence between the distribution

of donors and acceptors as a function of the Molecular Coordination Number. The inset shows

the maps where alternatively donors and acceptors occupy the same spots of the 2D probability

distribution g(cos(θOO), φOO).

I. QUANTIFYING THE DONOR/ACCEPTOR DISTRIBUTION ASYMMETRY

Figure 1 of the main paper shows that there is a different distribution of oxygen atoms

belonging to donors and acceptors around a central water molecule. This distribution is

encoded in the 2D probability distribution function g(cos(θOO), φOO) where in the north

hemisphere we can find acceptors and in the southern hemisphere we can find donors. Since

we are interested in quantifying the difference between the distribution of donors and accep-

tors, we are indeed searching a magnitude able to calculate how different are the distributions

of northern and southern hemispheres. Information theory provides us with a tool to cal-

culate the ”distance” between two different probability distributions: the Kullback-Leibler

divergence (DKL) defined as:

DKL (P ||Q) =
∑

i

Pi ln
Pi

Qi

(1)

Although DKL is not a real distance because it is not symmetric, i.e. DKL (P ||Q) �=

DKL (Q||P ), it is possible to define a symmetrized version as DKL(P,Q) =

1/2 (DKL (P ||Q) +DKL (Q||P )). In the present case we have checked the three distances

(the two non-symmetrized and the simmetrized one) getting approximately the same results,

and exactly the same trends. In order to be able to calculate this distance we have chosen
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an alternative axis set to the one of figure 1 of main text so that donors are located in the

position of the acceptors (see inset of figure 1). We show in figure 1 the results for the

symmetrized DKL as a function of the number of the Molecular Coordination Number, i.e.

the number that results after ordering molecules by increasing distances. As expected, the

first four neighbors have the maximum possible assymetry in the liquid. However after the

fifth neghbour we see that the assymetry again increases having a maximum for molecule

number eight to fade out for an MCN > 20. In order to rule out that this assymetry is a

trivial effect due to an increasingly loose of correlation with distance, we have divided DKL

by the entropy associated to the maps (S =
∑

i Pi lnPi) obtaining again the same trend.

II. DETERMINING MOLECULAR ORIENTATION

In order to extract the orientational short range order of a liquid an axis set XY Z is

attached to each molecule of the simulation box. We then calculate for each molecule, that

will be called central for the sake of clarity, the projection of the X ′Y ′Z ′ axes attached

to neighbor molecules, on the XY Z frame of the central molecule. During the analysis all

molecules will play the role of central molecule and that of neighbor molecules will be played

by the ones that are selected by a distance criterion to the central one. In this way we obtain

the Cartesian components of the neighbor axes set, using as a reference frame the axis set

of the central molecule. Then, we calculate the relative orientation of the neighbor molecule

with respect to the central one by calculating the Euler angles. These angles are defined as

successive rotations around an arbitrary axis C, another rotation around a second arbitrary

axis C’ and a last rotation around the first axis C. Moreover rotations can be left or right

handed. In this work we have chosen the ZY Z convention so that right handed rotations

are done around Z, Y and Z axes. In figure 2 we show a water molecule arbitrarily rotated

by the Euler angles convention used in this work.

In order to get the three Euler angles from a rotated frame it is necessary to calculate

the full rotation matrix in three dimensions from the rotation matrices around each chosen

axes. However, since the trigonometric functions sine and cosine are not able to distinguish

between angles in all four quadrants it is necessary to add a function that allows the calcu-

lation of the sign of the angle. For this reason we use the following expressions to calculate

the Euler angles from the rotated axes coordinates:
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FIG. 2: (color online). Water molecule rotated arbitrarily using the Euler angles θ, φ, ψ defined as

right handed rotations around Z Y and Z axes respectively.

θ = ZZ′ (2)

φ =
ZY ′

‖ZY ′‖
arccos

ZX′√
1− Z2

Z′

(3)

ψ = −
YZ′

‖YZ′‖
arccos

−XZ′√
1− Z2

Z′

(4)

Where εε′ with ε = x, y, z, is the projection of the neighbor axes ε′ in the central molecule

axes set ε.

Once the Euler angles are obtained for all the selected pairs of molecules it is necessary

to calculate the three-dimensional probability density function g (cos(θori), φori, ψori). To do

that it is important to ensure that all the 3D bins have the same size. If the bins are

chosen to be equally sized for angle θ the probability density function for randomly oriented

molecules would be that of a normalized cosine, having therefore a maximum for θ = 90◦

and minima for θ = 0◦ and θ = 180◦.

In order to obtain equally sized 3D bins for g (cos(θori), φori, ψori) the statistics must be

performed using bins equidistributed in cos(θ) instead of θ. In fact the statistics of any

angle that is coming from the projection of one vector into another like the angle between

two dipoles Φdip−dip in figure 4 of the main text must be done with a cosine-sized binning,

otherwise there will be always a fake negligible probability to find two parallel or anti-parallel

vectors.
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FIG. 3: (color online). Partial radial distribution function between two oxygen atoms around

molecules having a first neighbor either in cis (squares), a trans (triangles) configuration. The

total partial radial distribution Oxygen-Oxygen is represented in black full circles.

III. BEYOND THE FIRST NEIGHBOR

A series of tests has been carried out to see if the presence of different dimers alters

the positional short range order of water molecules without finding any evidence for such

an effect (see main text). First of all we have calculated the partial radial distribution

functions between two oxygen atoms of water, participating the central molecule in a trans

or cis dimer. As it can readily be seen in figure 3 there are no noticeable differences

between oxygen distances for molecules forming a cis or trans dimer. Moreover, we compare

those partial radial distribution functions with that of all oxygens without any restriction,

obtaining the same result as for the segregated oxygens.

We have also performed a more detailed test to investigate if molecules forming either of

the two dimers have a different 3D spatial distribution of oxygen atoms around them. To

do that we show in figure 4 the positional maps g(cos(θOO), φOO) as the ones in figure 1 of

the main paper but for neighbors from 1 to 12. We have chosen the molecule located at

cos(θ) ≈ 0.66 and φ ≈ 90◦ to be either in cis or trans configuration. From the figure we see

that the position of molecules does not change around molecules forming a cis or trans dimer

since the obtained maps are the same for the three cases: without dimer discrimination, cis

or trans.
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FIG. 4: (color online). Positional maps g(cos(θOO), φOO) for three cases: without dimer discrimi-

nation and being the neighbor molecule at (cos(θ) ≈ 0.66, φ ≈ 90◦) cis or trans. In the same figure

we add the partial radial distribution function and the molecular coordination number for the sake

of clarity.
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