Supporting Information for:

Influence of Dispersive Forces in the Final Shape of a Micelle

I. León, R. Montero, A. Longarte and J. A. Fernández*

Dep. of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, 48940, Leioa, Spain.

josea.fernandez@ehu.es

Figure S1. Calculated structures for ciclohexanol₂ at M06-2X/6-311++G(d,p) level, together with their relative stability in kJ/mol. ZPE correction was applied to all the energy values.

Figure S1. Cont.

Figure S1. Cont.

Structure				
Ch ₂ -n	ΔE (kJ/mol)	ΔE_{ZPE} (kJ/mol)	$D_{\theta}(kJ/mol)$	BSSE (kJ/mol)
n=	, , ,			, , ,
1	0.00	0.00	-25.47	3.73
2	-0.10	0.20	-27.05	3.60
3	-1.20	1.05	-25.89	3.90
4	0.42	1.30	-25.66	3.89
5	1.29	1.57	-25.50	3.77
6	2.13	1.75	-25.74	3.34
7	0.27	1.97	-23.85	3.38
8	-0.35	2.12	-23.19	3.89
9	2.10	2.31	-29.62	3.72
10	1.02	2.33	-24.71	3.79
11	2.18	2.65	-27.70	3.67
12	-0.29	2.77	-27.26	3.99
13	-0.29	2.78	-27.84	3.40
14	2.29	2.80	-29.76	3.11
15	0.43	3.08	-28.56	4.03
16	2.10	3.11	-22.68	3.41
17	0.81	3.16	-25.62	3.70
18	2.32	3.22	-24.15	3.46
19	1.57	3.28	-24.09	3.49
20	2.52	3.28	-25.20	2.35
21	2.27	3.66	-25.06	2.11
22	1.75	3.90	-23.54	3.40
23	2.07	3.93	-21.79	3.48
24	0.85	4.04	-23.20	3.60
25	2.29	5.11	-26.68	3.87
26	2.50	5.56	-29.15	4.14
27	5.01	6.40	-23.99	3.64
28	4.04	9.44	-25.52	3.88
29	20.07	17.75	-11.41	1.68
30	19.81	18.73	-12.79	2.50
31	20.89	19.74	-9.41	1.69
32	21.78	19.88	-7.54	1.78
33	21.19	20.56	-6.74	1.90
34	21.14	20.74	-6.64	1.82
35	22.65	21.54	-9.50	1.44
36	22.63	22.10	-8.63	1.75
37	22.85	22.20	-10.19	1.64
38	22.33	22.20	-8.83	1.44
39	23.65	22.30	-6.97	1.57

Table S1. Calculated structures for ciclohexanol₂ at M06-2X/6-311++G(d,p) level, together with their relative stability in kJ/mol. ZPE correction was applied to all the energy values.

<i>Structure</i> Ch ₂ -n n=	ΔE (kJ/mol)	ΔE_{ZPE} (kJ/mol)	D ₀ (kJ/mol)	BSSE (kJ/mol)
40	24.48	22.32	-6.87	1.65
41	23.79	22.36	-9.92	1.75
42	23.20	23.22	-4.56	1.42
43	25.75	24.01	-5.45	1.37
44	23.38	24.01	-5.24	1.58
45	25.15	24.41	-5.16	1.26
46	26.65	24.77	-3.21	1.22
47	26.65	25.33	-2.59	1.28
48	26.51	25.89	-1.84	1.47

Table S1. Cont.

Figure S2. Experimental IDIRS for cyclohexanol₂ (upper trace) together with the predicted frequencies for each calculated structure at M06-2X/6-311++G(d,p) level. A correction factor of 0.935 was employed.

Figure S2. Cont.

Figure S3. Calculated structures for ciclohexanol₃ at M06-2X/6-311++G(d,p) level, together with their relative stability in kJ/mol. ZPE correction was applied to all the energy values.

Figure S3. Cont.

Figure S3. Cont.

Structure				
Ch₃-n	ΔE (kJ/mol)	ΔE_{ZPE} (kJ/mol)	$D_{\theta}(kJ/mol)$	BSSE (kJ/mol)
n=	, , ,	/		
1	0.00	0.00	-75.24	9.22
2	-0.40	0.12		
3	-0.86	0.12		
4	-0.17	0.17		
5	0.93	0.62		
6	-1.58	0.62		
7	0.94	0.90		
8	-0.76	0.96		
9	-2.27	1.00		
10	1.46	1.10		
11	1.64	1.10		
12	1.45	1.36		
13	1.78	1.61		
14	2.11	2.20		
15	3.09	2.24		
16	3.19	2.60		
17	4.96	2.64		
18	2.62	2.79		
19	4.01	3.00		
20	2.20	3.03		
21	3.12	3.18		
22	0.39	3.21		
23	3.61	3.34		
24	2.53	3.38		
25	4.03	3.75		
26	0.65	3.95		
27	3.15	4.43		
28	3.24	4.48		
29	5.08	5.47		
30	3.20	6.06		
31	8.50	7.70		
32	11.13	9.06		
33	12.95	11.50		
34	15.58	13.80		
35	16.08	14.40		
36	16.10	14.53		
37	14.76	14.58		
38	16.42	15.74		
39	18.88	16.06		

Table S2. Calculated structures for ciclohexanol₃ at M06-2X/6-311++G(d,p) level, together with their relative stability in kJ/mol. ZPE correction was applied to all the energy values.

<i>Structure</i> Ch ₃ -n n=	ΔE (kJ/mol)	ΔE_{ZPE} (kJ/mol)	D ₀ (kJ/mol)	BSSE (kJ/mol)
40	18.29	16.91		
41	19.31	17.00		
42	18.16	17.02		
43	19.86	17.10		
44	19.14	17.78		
45	17.92	18.16		
46	19.69	18.26		
47	19.66	18.78		
48	21.26	20.52		
49	22.15	20.66		
50	21.95	21.36		
51	22.74	22.38		

Table S2. Cont.

Figure S4. Experimental IDIRS for cyclohexanol₃ (upper trace) together with the predicted frequencies for each calculated structure at M06-2X/6-311++G(d,p) level. A correction factor of 0.935 was employed.

יייץ יי עריין איין איין איין איין איין איין איין	
	37
	38
	39
·····	40
	41
•••••••••••••••••••••••••••••••••••••••	42
·····•	43
	44
	45
·····	46
•••••	4 7
	48
3200 3400 Wavenum	3600 3800 ber / cm ⁻¹

لمالك. دايل

Figure S4. Cont.

Figure S5. Calculated structures for ciclohexanol₄ at M06-2X/6-311++G(d,p) level, together with their relative stability in kJ/mol. ZPE correction was applied to all the energy values.

Figure S5. Cont.

Figure S5. Cont.

Ch₄-53 [38.0]

Structure				
Ch₄-n	ΔE (kJ/mol)	ΔE_{ZPE} (kJ/mol)	$D_{\theta}(kJ/mol)$	BSSE (kJ/mol)
n=	, , ,			
1	0.00	0.00	-137.47	18.36
2	7.03	5.80		
3	7.77	5.90		
4	7.64	6.36		
5	7.05	7.00		
6	10.79	7.39		
7	5.58	7.40		
8	8.15	7.41		
9	11.25	7.87		
10	12.43	8.10		
11	9.98	8.26		
12	9.83	8.39		
13	9.65	8.53		
14	6.42	8.61		
15	10.51	8.69		
16	12.10	8.84		
17	10.78	9.08		
18	13.10	9.18		
19	9.14	9.59		
20	8.62	9.60		
21	11.98	9.61		
22	11.96	9.87		
23	11.82	10.12		
24	13.56	10.70		
25	13.02	10.75		
26	12.17	11.34		
27	13.14	11.35		
28	12.70	12.08		
29	12.87	12.70		
30	14.33	12.71		
31	14.72	13.12		
32	15.69	13.36		
33	17.83	14.17		
34	17.12	14.68		
35	16.88	15.68		
36	18.94	16.94		
37	19.18	17.22		
38	20.05	17.62		
39	21.69	18.01		

Table S3. Calculated structures for ciclohexanol₄ at M06-2X/6-311++G(d,p) level, together with their relative stability in kJ/mol. ZPE correction was applied to all the energy values.

<i>Structure</i> Ch₄-n n=	ΔE (kJ/mol)	ΔE_{ZPE} (kJ/mol)	D ₀ (kJ/mol)	BSSE (kJ/mol)
40	22.39	18.60		
41	25.62	21.74		
42	24.42	22.13		
43	25.44	22.64		
44	25.63	24.26		
45	27.68	25.98		
46	26.54	27.00		
47	30.55	27.66		
48	30.07	28.02		
49	30.26	29.56		
50	32.79	29.65		
51	34.76	33.33		
52	36.87	34.58		
53	40.84	38.05		

Table S3. Cont.

Figure S6. Experimental IDIRS for cyclohexanol₄ (upper trace) together with the predicted frequencies for each calculated structure at M06-2X/6-311++G(d,p) level. A correction factor of 0.945 was employed.

Figure S6. Cont.

Figure S7. Calculated structures for ciclohexanol₅ at M06-2X/6-311++G(d,p) level, together with their relative stability in kJ/mol. ZPE correction was applied to all the energy values.

Figure S7. Cont.

Structure				
Ch₅-n	ΔE (kJ/mol)	ΔE_{ZPE} (kJ/mol)	$D_{\theta}(kJ/mol)$	BSSE (kJ/mol)
n=				
1	0.00	0.00	-179.39	24.64
2	0.12	0.55		
3	0.47	1.95		
4	1.84	1.97		
5	0.44	2.40		
6	1.03	3.13		
7	2.60	3.34		
8	1.62	3.50		
9	-0.36	3.59		
10	4.22	3.66		
11	1.65	4.03		
12	2.64	4.14		
13	2.12	4.46		
14	2.64	4.96		
15	3.25	5.24		
16	3.81	5.69		
17	4.50	5.86		
18	3.66	6.72		
19	5.84	7.83		
20	2.81	7.84		
21	4.87	8.34		
22	5.48	8.79		
23	14.89	12.12		
24	13.71	16.64		
25	18.48	18.27		
26	17.50	19.13		
27	20.48	19.26		
28	17.41	20.24		
29	17.90	20.36		
30	16.43	20.55		
31	20.87	21.17		
32	20.42	21.53		
33	19.66	22.53		
34	21.78	22.82		
35	23.54	25.27		
36	23.90	25.54		
37	24.85	25.62		
38	26.80	27.10		
39	32.28	32.22		
40	49.09	49.41		

Table S4. Calculated structures for ciclohexanol₅ at M06-2X/6-311++G(d,p) level, together with their relative stability in kJ/mol. ZPE correction was applied to all the energy values.

Figure S8. Experimental IDIRS for cyclohexanol₅ (upper trace) together with the predicted frequencies for each calculated structure at M06-2X/6-311++G(d,p) level. A correction factor of 0.945 was employed.

Figure S8. Cont.

Figure S9. Calculated structures for ciclohexanol₆ at M06-2X/6-311++G(d,p) level, together with their relative stability in kJ/mol. ZPE correction was applied to all the energy values.

Figure S9. Cont.

<i>Structure</i> Ch ₆ -n n=	ΔE (kJ/mol)	ΔE_{ZPE} (kJ/mol)	D ₀ (kJ/mol)	BSSE (kJ/mol)
1	0.00	0.00	-233.40	31.00
2	2.83	1.44		
3	5.24	1.45		
4	9.04	2.64		
5	3.60	3.58		
6	6.10	4.05		
7	4.54	4.09		
8	7.40	4.70		
9	6.25	4.92		
10	8.31	5.29		
11	6.40	5.35		
12	11.55	5.89		
13	9.81	6.19		
14	7.82	6.29		
15	10.59	6.43		
16	7.39	6.53		
17	12.41	7.28		
18	12.62	7.85		
19	9.29	8.03		
20	10.38	8.69		
21	12.72	9.25		
22	12.54	9.30		
23	10.48	10.37		
24	12.71	11.48		
25	11.46	12.44		
26	17.39	12.88		
27	15.44	13.03		
28	15.80	13.36		
29	14.66	13.85		
30	21.92	17.47		
31	23.21	18.69		
32	20.15	20.20		

Table S5. Calculated structures for ciclohexanol₆ at M06-2X/6-311++G(d,p) level, together with their relative stability in kJ/mol. ZPE correction was applied to all the energy values.

Figure S10. Experimental IDIRS for cyclohexanol₆ (upper trace) together with the predicted frequencies for each calculated structure at M06-2X/6-311++G(d,p) level. A correction factor of 0.945 was employed.

<i>Structure</i> Ch ₂ -n n=	ΔE_{ZPE} (kJ/mol)	Relative position with ΔG	ΔG (kJ/mol)
1	0.00	2	1.20
2	0.20	10	3.48
3	1.05	15	4.69
4	1.30	19	5.41
5	1.57	3	1.39
6	1.75	5	2.61
7	1.97	14	4.26
8	2.12	18	5.21
9	2.31	9	3.24
10	2.33	13	4.12
11	2.65	12	3.93
12	2.77	6	2.72
13	2.78	8	2.79
14	2.80	7	2.78
15	3.08	20	6.00
16	3.11	11	3.65
17	3.16	28	7.93
18	3.22	1	0.00
19	3.28	4	1.73
20	3.28	17	4.83

Table S6. Relative energies with the ZPE contributions for the first 20 ciclohexanol₂ structures, calculated at M06-2X/6-311++G(d,p) level. ΔG column indicates the sum of electronic and thermal Free Energies at 298.25K.

<i>Structure</i> Ch₃-n n=	ΔE_{ZPE} (kJ/mol)	Relative position with ΔG	ΔG (kJ/mol)
1	0.00	17	8.36
2	0.12	10	4.71
3	0.12	4	2.16
4	0.17	26	10.85
5	0.62	3	2.15
6	0.62	15	7.57
7	0.90	7	4.12
8	0.96	23	10.27
9	1.00	22	10.08
10	1.10	9	4.67
11	1.10	11	5.01
12	1.36	2	1.69
13	1.61	18	8.37
14	2.20	8	4.13
15	2.24	6	3.14
16	2.60	21	9.50
17	2.64	14	7.56
18	2.79	12	5.27
19	3.00	1	0.00
20	3.03	5	2.79

Table S7. Relative energies with the ZPE contributions for the first 20 ciclohexanol₃ structures, calculated at M06-2X/6-311++G(d,p) level. ΔG column indicates the sum of electronic and thermal Free Energies at 298.25K.

<i>Structure</i> Ch₄-n n=	ΔE_{ZPE} (kJ/mol)	Relative position with ΔG	ΔG (kJ/mol)
1	0.00	14	8.94
2	5.80	8	7.18
3	5.90	15	9.36
4	6.36	1	0.00
5	7.00	11	8.10
6	7.39	4	4.43
7	7.40	30	11.63
8	7.41	31	11.73
9	7.87	6	5.15
10	8.10	22	10.62
11	8.26	10	8.06
12	8.39	16	9.53
13	8.53	26	11.09
14	8.61	33	12.40
15	8.69	3	4.41
16	8.84	12	8.50
17	9.08	5	4.81
18	9.18	2	0.55
19	9.59	25	10.83
20	9.60	28	11.47

Table S8. Relative energies with the ZPE contributions for the first 20 ciclohexanol₄ structures, calculated at M06-2X/6-311++G(d,p) level. ΔG column indicates the sum of electronic and thermal Free Energies at 298.25K.

<i>Structure</i> Ch₅-n n=	ΔE_{ZPE} (kJ/mol)	Relative position with ΔG	ΔG (kJ/mol)
1	0.00	1	0.00
2	0.55	2	3.25
3	1.95	8	8.57
4	1.97	3	4.10
5	2.40	5	6.76
6	3.13	10	9.23
7	3.34	7	7.02
8	3.50	6	6.81
9	3.59	18	12.25
10	3.66	9	8.79
11	4.03	14	10.75
12	4.14	11	9.40
13	4.46	12	9.82
14	4.96	21	15.59
15	5.24	13	10.63
16	5.69	4	6.41
17	5.86	16	11.37
18	6.72	19	12.31
19	7.83	17	11.43
20	7.84	23	17.69

Table S9. Relative energies with the ZPE contributions for the first 20 ciclohexanol₅ structures, calculated at M06-2X/6-311++G(d,p) level. ΔG column indicates the sum of electronic and thermal Free Energies at 298.25K.

Table S10. Relative energies with the ZPE contributions for the first 20 ciclohexanol₆ structures, calculated at M06-2X/6-311++G(d,p) level. ΔG column indicates the sum of electronic and thermal Free Energies at 298.25K.

<i>Structure</i> Ch ₆ -n n=	ΔE_{ZPE} (kJ/mol)	Relative position with ΔG	ΔG (kJ/mol)
1	0.00	12	7.45
2	1.44	7	4.83
3	1.45	1	0.00
4	2.64	6	4.71
5	3.58	8	5.36
6	4.05	2	2.01
7	4.09	5	2.93
8	4.70	14	8.02
9	4.92	22	11.17
10	5.29	10	7.31
11	5.35	15	8.08
12	5.89	3	2.21
13	6.19	13	7.67
14	6.29	20	9.83
15	6.43	4	2.81
16	6.53	18	8.52
17	7.28	9	5.93
18	7.85	11	7.33
19	8.03	17	8.25
20	8.69	19	9.56