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Figure S1. AFM images (left column) and height profile (right column) of 200 nm PMMA 

film at various fabrication steps. (a - b) 200 nm PMMA thin film and (c - d) linear patterns 

after first nanoimprinting. (e - f) and (g – h) are AFM profiles along the side walls and across 

box-like patterned template after the second nanoimprinting.



Figure S2. a) SEM image, b) UV-vis spectra and c) size distribution of Ag nanocubes used.

All the peaks in the extinction spectrum are characteristic localized surface plasmon 

resonances (LSPRs) of colloidal Ag nanocubes. Specifically, the peaks at approximately 346, 

365, 413, 525 and 672 nm can be assigned to the octupole (346 nm and 365 nm), quadrupole 

(413 nm and 525 nm) and dipole resonances (672 nm) of Ag nanocubes, respectively.



Discussion on the selective aggregation of Ag nanocubes within the boxes

The selective aggregation of Ag nanocubes within the boxes is likely due to two factors. 

Firstly, the height of the box (~ 0.6 m) is approximately 6-folds longer than the length of Ag 

nanocubes. Hence, capillary interaction of water with the interior hydrophilic alumina-coated 

walls will drive more Ag nanocubes into the boxes, forming multilayer aggregation instead of 

a monolayer. Secondly, the wall-to-wall length, approximately 5 m, is much smaller than 

the capillary length of water such that surface tension of water will dominate over the effect 

of external forces,1 like gravity and N2 gas streaming, applied after the transfer of Ag 

nanocubes to remove residual water. Thus, Ag nanocube-containing water is likely to be 

trapped within the pore and subsequent drying will cause the formation of multilayer Ag 

nanocube.



Figure S3. Illustration on the effect of the patterned template on static contact angles along 

different axes. (a) SEM image and (b) scheme of the patterned template. Effect of the 

patterned template on static contact angles viewed from the (c) x-axis angle and (d) y-axis.

The observation of two angles arises from the joining of the protruding corners of the 

patterns causing bidirectional (x-axis and y-axis) surface pattern. X-axis is define as the 

direction parallel to the protruding corners of the patterns while y-axis is define as the 

direction perpendicular to the protruding corners of the patterns. The droplet along the x-axis 

rests on lesser elevated walls as compared to y-axis (Figure S3). Due to the presence of 

perfluorodecanethiol on the wall surfaces, an area that possesses more elevated walls has a 

higher surface energy. Therefore the surface energy along the x-axis is lower as compared to 

y-axis. The resulting difference in surface energy along x and y axis leads to the observation  

of two contact angle with x-axis having a lower contact angle of  105±6° and y-axis having a 

contact angle of 138 ± 8°. Next, when a dense layer of Ag nanocubes are deposited on 200 

nm PMMA patterns, a large increased in contact angles are observed, with contact angle 

along the x-axis increasing by ~ 50 % to 164 ± 5°, and contact angle along the y-axis 

increasing by ~ 22 % to 167 ± 7°. In contrast, superhydrophobicity cannot be achieved at 

early stages of the patterns fabrication with a flat PMMA surface having a contact angle of 

111 ± 4 ° (Table S1). The increase in contact angle is due to the increase in surface roughness 

as shown earlier. In addition, after the deposition of Ag nanocubes, the disparity between 

both axial became negligible, thus indicating an increase in homogeneity of the surface 

roughness



Figure S4. (a) Table of peaks assignment for rhodamine 6G2 and (b) Raman spectrum of 

rhodamine 6G. (c) Calculation of analytical enhancement factor on superhydrophobic SERS 

platform.



Figure S5. Application of superhydrophobic surface for ultratrace analysis using rhodamine 

6G as probe molecule. SERS spectra of rhodamine 6G on superhydrophobic SERS substrate 

as a function of concentration ranging from 10-17 M to 10-7 M. 

Reference

1. N. J. Shirtcliffe, G. McHale, S. Atherton and M. I. Newton, Adv. Colloid Interface Sci., 2010, 
161, 124-138.

2. P. Hildebrandt and M. Stockburger, J. Phys. Chem., 1984, 88, 5935-5944.


