Supporting Information

A Novel Photo-Responsive Azobenzene-Containing Nano-Ring

Host for Fullerene Guest Facile Encapsulating and Releasing

Kun Yuan^{*a,b*}, Yi-Jun Guo^{*a*}, Xiang Zhao^{*a*,*}

^a Institute for Chemical Physics & Department of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
^b College of Life Science & Chemistry, Tianshui Normal University, Tianshui, 741001, China

Corresponding Author

* Fax: +86 29 8266 8559. Tel: +86 29 8266 5671. E-mail: xzhao@mail.xjtu.edu.cn

Contents:

Figure S1. π -orbital axis vector (POAV)

Figure S2. Atom label of the [10]CPP, azobenzene and [4]AB for POVA and θ_p listed in Table S1.

Table S1. The θ_p (°) of some selected C atom (see Figure S2) of the azobenzene,

[10]CPP and [4]AB nanoring

Figure S3. Simulated UV-visible-NIR absorption spectrum compare for the trans-

[4]AB, [4]AB \supset C₆₀ and [4]AB \supset C₇₀ host-guest complexes

^{*} corresponding author, e-mail: <u>xzhao@mail.xjtu.edu.cn</u>

Figure S1. π -orbital axis vector (POAV) shown for a nonplanar conjugated carbon atom bonded to atoms 1, 2, 3, through the schematized σ bonds σ_1 , σ_2 , σ_3 , and definition of the angles $\theta_{\sigma\pi}$ made by the π -orbital to each of the σ bonds.

Figure S2. Atom label of the [10]CPP, azobenzene and [4]AB for POVA listed in

Table S1

[10]CPP and [4]AB nanoring										
Atom lable	1	2	3	4	5	6	7	8	9	10
[10]CPP	3.89	2.45	2.45	3.88	1.09	1.11	3.87	3.91	_	_
Azobenzene	0	0	0	0	0	0	0	0	_	_
[4]AB	4.10	2.29	2.30	3.82	1.42	1.55	3.84	1.43	1.58	4.00

Table S1 the θ_p (°) of some selected C atom (see Figure S2) of the azobenzene, [10]CPP and [4]AB nanoring

Equation S1

 $Strain=E_0-E_A-(E_B-2E_C)$ Eq(S1)

Where E_0 is the energy of the free [4]AB nanoring, E_A is the energy of the open-ring structure (A) of the [4]AB, E_B is the energy of the open-ring structure (B) of the [2]AB, E_C is the energy of the azobenzene (C). For clarity, the structures of A, B and C are given below.

Figure S3. Simulated UV-visible-NIR absorption spectrum compare for the *trans*-[4]AB, [4]AB \supset C₆₀ and [4]AB \supset C₇₀ host-guest complexes