An Efficient Method to Enhance the Stability of Sulphide Semiconductor Photocatalysts: A Case Study of N-Doped ZnS

Yansong Zhou,^a Gang Chen,^{a,*} Yaoguang Yu,^a Yujie Feng,^{b,*} Yi Zheng,^a Fang He,^a Zhonghui Han^a

^aDepartment of Chemistry, Harbin Institute of Technology, Harbin 150001, P. R. China. E-mail: gchen@hit.edu.cn; Fax: (+86) - 451 - 86413753; Tel: (+86) - 451 - 86413753.

^bState Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73

Huanghe Road, Nangang District, Harbin 150090, P. R. China. E-mail: yujief@hit.edu.cn; Fax: (+86) -

451 - 87162150; Tel: (+86) - 451 - 86283068.

Fig. S1. XRD patterns of N-doped ZnS and pristine ZnS. The as-prepared N-doped ZnS and pristine ZnS show a character of hexagonal ZnS phase (JPCDS NO. 89-2156).

Fig. S2. SEM images of the as-prepared N-doped ZnS. (b) TEM image of a single bulk and its SADE patterns (the inset image).

Fig. S3. EDX analysis of N-doped ZnS. The low doping concentration of N is revealed in the sample as a reason of the large expelling effect between Zn and impurity atoms.

Fig. S4. Tauc plot corresponding to the pristine (red) and N-doped (green) ZnS. Remarkable decrease in bandgap was found after being doped with N.

Fig. S5. IR spectra of pristine and N doped ZnS after photocatalytic reaction for 5 hours. The peaks at 3396.1 cm⁻¹ and 1614.2 cm⁻¹ corresponded to -OH group of the adsorbed water molecules.^{[1], [2]} Peaks at 1375.6 cm⁻¹, 1261.2 cm⁻¹, 1006.7 cm⁻¹ and 889.0 cm⁻¹are assigned to ZnS lattice,^[3] which originate from the resonance interaction between vibrational modes of sulphide ions in the crystal^[4]. The peaks at 646 cm⁻¹ is assigned to the ZnS band.^[5]

Fig. S6. TEM image of pristine ZnS after 5 h simulated sunlight irradiation.

Fig. S7. XPS spectra of N 1s and Zn 2p of N doped ZnS before (black) and after (blue) 5h of illumination.

Table S1 Concentration of S and Zn in the solution for doped and undoped ZnS after photocalytic reaction for 5 hours measured by ICP-AES.

Samples	Concentration (mg/L)	
	Zn	S
Pristine ZnS	85.291	7.483
N doped ZnS	8.125	6.515

Fig. S8. XRD patterns of N-doped ZnS and pristine ZnS after photocatalytic reaction for 12h. No impurities and changes in crystal structure are observed indicating the high stability of N-doped ZnS during the photocatalytic process.

References

- [1] M. Criado, A. Fernández-Jiménez, A. Palomo, Micropor. Mesopor. Mater., 2007, 106, 180-191.
- [2] Y. Shi, S. Jiang, K. Zhou, et al. RSC Adv., 2014, 4, 2609-2613.
- [3] B. S. Rema Devi, R. Raveendran, A. V. Vaidyan. Pramana-J. Phy. 2007, 68, 679.
- [4] S. Kurian, S. Sebastian, J. Mathew and K. C. George, Indian J. Pure Appl. Phys., 2004, 42, 926.
- [5] J. X. Yang, S. M. Wang, X. Zhao, et al. J. Crystal Growth, 2008, 310, 4358.