Electronic Supplementary Information

Coverage-Dependent Thermodynamic Analysis of the Formation of Water and Hydrogen Peroxide on Platinum Model Catalyst

Rodrigo Ferreira de Morais,^{*a,b*} Alejandro A. Franco^{*c,d*}, Philippe Sautet^{*a*} and David Loffreda^{**a*‡}

Received August 21st 2014 DOI: 10.1039/b000000x

The adsorptions and coadsorptions geometries for different sites have been tested for each intermediate species for H_2O and H_2O_2 formation on Pt(111). The correspond energies for the adsorption energy (E_{ads}) adsorption have been exposed in the article (table 1) and the reactive coadsorption energy (E_{rcoads}) is exposed in Table 1 in this supplementary material.

Fig. 1 Top and side views of atomic hydrogen adsorption on Pt(111). a) H(F) b) H(H) c) H(T)

^a Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Laboratoire de Chimie, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France.

^b CEA, DRT/LITEN/DEHT/LCPEM, 17 Rue des Martyrs, F-38054 Grenoble Cedex 9, France.

^c Laboratoire de Réactivité et de Chimie des Solides, Université de Picardie Jules Verne, CNRS, UMR 7314, 33 Rue Saint Leu, F-80039 Amiens, France.

^d Réseau sur le Stockage Electrochimique de l'Energie (RS2E) FR CNRS 3459, France.

[‡] Corresponding author: Fax: +33.4.72.72.88.60; Tel: +33.4.72.72.88.43; E-mail: David.Loffreda@ens-lyon.fr.

Fig. 2 Top and side views of atomic oxygen adsorption on Pt(111). a) O(F) b) O(H)

Fig. 3 Top and side views of molecular oxygen adsorption on Pt(111). a) O₂(TB) b) O₂(BT) c) O₂(TT)

Fig. 4 Top and side views of hydroxide adsorption on Pt(111). a) O(B)-H(H) b) O(T)-H(B) c) O(T)-H(H). The O(T)-H(B) and O(T)-H(H) have the same adsorption energy (E_{ads}).

Fig. 5 Top and side views of hydroperoxyl adsorption on Pt(111). a) $O_2(TT)$ -H(B) b) O(B)-OH(TB_{*F*}) c) O(B)-OH(TB_{*H*}). The O(B)-OH(TB_{*F*}) and O(B)-OH(TB_{*H*}) have the same adsorption energy (E_{ads}).

Fig. 6 Top and side views of water adsorption on Pt(111). a) O(T)-2H(B) b) O(T)-H(H)H(F) c) O(T)-2H(B) c) O(T)-2H(B). All the tested geometries of the H_2O adsorption on Pt(111) have the same adsorption energy (E_{ads}) .

Fig. 7 Top and side views of hydrogen peroxide adsorption on Pt(111). a) O(T)-H(B)OH(F) b) O(T)-H(B)OH(F) c) O(T)-H(B)OH(F). All the tested geometries of the H_2O_2 adsorption on Pt(111) have the same adsorption energy (E_{ads}).

Table 1 Reactive coadsorption energy (E_{rcoads}) and coadsorption energy balance (ΔE_{coads}) for the surface reaction intermediates involved in the formation of water and hydrogen peroxide on Pt(111). S_{conn} and H_{conn} are the connectivity between coadsorbed atoms sharing a surface platinum, and the hydrogen bond networking between coadsorbates, respectively. d is the smallest distance between surface bonded coadsorbed atoms.

co-adsorption structure	Erroade	Sam	Haann	$d(A_1 - A_2)$	ΔE_{acada}
$\frac{1}{H_2(z) + 2S \rightarrow 2H(z=z=z)}$	Licouus	Sconn		a(111 112)	Louis
H(F)+H(F)	-98	Yes	No	2.88	0
H(T)+H(T)	-96	No	No	2.95	3
H(F)+H(H)	-91	Yes	No	3.32	2
H(T)+H(F)	-90	Yes	No	2 25	8
H(H)+H(H)	-88	Yes	No	2.23	1
H(T)+H(H)	-86	Yes	No	2.00	8
H(F)+H(H)*	-77	Yes	No	2.08	16
$\frac{O_{2}(1)+2S}{O_{2}(1)+2S} \rightarrow 2O_{1}(1)$					
O(F)+O(F)	-228	No	No	4 87	7
O(F)+O(F)*	-214	Yes	No	3.01	21
O(F)+O(F)**	-193	No	No	4 29	42
O(F)+O(H)	-193	No	No	4.29	7
O(H)+O(H)*	-157	No	No	4 89	43
O(H)+O(H)	-150	Yes	No	3 36	14
$\frac{1/2}{1/2} \frac{H_0(x) + 1/2}{H_0(x) + 1/2} \frac{1}{2} \frac{H_0(x)}{H_0(x)} + 2S \rightarrow (O+H)(x-1)$	150	105	110	5.50	
O(F)+H(T)	-165	No	No	3 36	-3
O(F) + H(F)	-158	Vec	No	3.03	9
O(F)+H(B)	-153	Yes	No	3.06	13
O(F)+H(H)	-151	Yes	No	3.49	11
$\frac{O(1)H(1)}{1/2H_{0}(1)+O_{0}(1)+2S \rightarrow (O_{0}+H)(1-1)}$	151	103	110	5.47	11
$O_2(TT) + H(H)$	-123	No	No	4.06	2
$O_2(TT) + H(H) *$	-123	No	No	3 54	3
$O_2(TT) + H(T)$	-122	No	No	1.74 1.74	1
$O_2(TT) + H(T)$	-110	No	No	2.87	-
$O_2(TT) + H(R)$	110	No	No	3.25	7
$O_2(11) + \mathbf{H}(\mathbf{B})$ $O_2(\mathbf{TP}) (\mathbf{E}) + \mathbf{H}(\mathbf{T})$	-119	No	No	2.01	1
$O_2(TB) - (T') + H(T)$	-116	No	No	2.91	4
$O_2(11) + \mathbf{H}(\mathbf{B})^{T}$	-110	No	No	2.90	9
$O_2(\mathbf{TD}) \cdot (\mathbf{\Gamma}) + \mathbf{H}(\mathbf{\Gamma})$	-113	No	No	4.09	10
$O_2(TB) - (T) + H(B)$	-115	No	No	3.09	10
$O_2(1\mathbf{D}) - (\mathbf{\Gamma}) + \mathbf{\Pi}(\mathbf{D})^*$	-112	No	INO No	3.23	5
$O_2(1D) - (\Pi) + \Pi(1)$	-105	No	No	2.92	12
$\frac{O_2(1D)-(11)+11(D)}{U_1+1/2O_2+2S_2+(OU+U)}$	-98	NU	NU	5.41	12
$H_{2(g)} + 1/2 O_{2(g)} + 2S \rightarrow (OH + H)_{(coads)}$	217	Ν	N.	2 5 4	(
OH(B)-H(H)+H(F)	-217	INO N-	INO N-	3.54	0
OH(T)-H(B)+H(F)	-210	INO Mar	INO N-	3.20	2
$OH(B)-H(H)+H(F)^*$	-215	res	INO N-	3.10	3
OH(1)-H(H)+H(1)	-214	INO N-	INO N-	3.03	2
OH(1)-H(B)+H(1)	-214	INO N-	INO N-	3.10	2
$\frac{OH(1)-H(H)+H(B)}{H(H)+O(H)+O(H)+O(H)+O(H)}$	-209	NO	No	2.84	/
$H_{2(g)} + O_{2(g)} + 2S \rightarrow (OOH + H)_{(coads)}$	171			2 00	10
OOH(TT)-H(B)+H(T)	-1/1	No	No	2.88	12
$OOH(TT)-H(B)+H(T)^*$	-165	No	No	2.88	12
OOH(TT)-H(B)+H(B)	-162	No	No	2.88	9
OOH(T)-OH(B)+H(B)	-159	No	No	2.84	12
$\frac{OOH(B)-OH(F)+H(T)}{1/2}$	-143	No	No	2.62	10
$1/2 H_{2(g)} + O_{2(g)} + 2S \rightarrow (OH + O)_{(coads)}$	a ~ -				
OH(T)-H(F)+O(F)	-285	No	No	4.47	-1
OH(T)-H(H)+O(F)	-282	No	No	4.53	2
OH(T)-H(F)+O(F)*	-282	No	No	4.50	3
OH(T)-H(H)+O(H)	-248	No	No	3.37	2
$H_{2(g)} + O_{2(g)} + 2S \rightarrow 2OH_{(coads)}$					
OH(T)-H(F)+OH(B)-H(F)	-378	No	Yes	1.48	-39
OH(T)-H(H)+OH(B)-H(H)	-374	No	Yes	1.53	-36
OH(T)-H(B)+OH(T)-H(B)	-356	No	Yes	1.79	-22
OH(T)-H(H)+OH(B)-H(H)*	-332	No	No	2.75	7
$H_{2(g)} + O_{2(g)} + 2S \rightarrow (H_2O + O)_{(coads)}$					
$H_2O(T)-H(B)H(H)+O(F)$	-152	No	Yes	2.38	12
$H_2O(T)-H(B)H(F)+O(H)$	-115	No	Yes	2.22	12

4 | Journal Name, 2010, [vol],1–9

This journal is © The Royal Society of Chemistry [year]

Fig. 8 Top and side views of the co-adsorption between two atomic hydrogen on Pt(111). a) H(F)+H(F) b) $H(F)+H(H)^*$ c) H(F)+H(H) d) H(H)+H(H) e) H(T)+H(F) f) H(T)+H(H) g) H(T)+H(T)

Fig. 9 Top and side views of the co-adsorption between two atomic oxygen on Pt(111). a) O(F)+O(F)* b) O(F)+O(H) c) O(H)+O(H) d) O(F)+O(F)** e) O(F)+O(F) f) O(H)+O(H)*

Fig. 10 Top and side views of the co-adsorption between atomic oxygen and atomic hydrogen on Pt(111). a) O(F)+H(B) b) O(F)+H(F) c) O(F)+H(H) d) O(F)+H(T)

Fig. 11 Top and side views of the co-adsorption between molecluar oxygen and atomic hydrogen on Pt(111). a) $O_2(TT) + H(H) b) O_2(TT) + H(H) c) O_2(TT) + H(F) d) O_2(TT) + H(T) e) O_2(TT) + H(B) f) O_2(TB)-(F)+H(T) g) O_2(TT) + H(B)*h) O_2(TB)-(F)+H(F) i) O_2(TB)-(F)+H(B)*k) O_2(TB)-(H)+H(T)$

Fig. 12 Top and side views of the co-adsorption between hydroxide and atomic hydrogen on Pt(111). a) OH(B)-H(H)+H(F) b) OH(T)-H(B)+H(F) c) $OH(B)-H(H)+H(F)^*$ d) OH(T)-H(H)+H(T) e) OH(T)-H(B)+H(T) f) OH(T)-H(H)+H(B)

Fig. 13 Top and side views of the co-adsorption between hydroperoxyl and atomic hydrogen on Pt(111). a) OOH(TT)-H(B)+H(T) b) OOH(TT)-H(B)+H(T)+H(B) d) OOH(T)-OH(B)+H(B) e) OOH(B)-OH(F)+H(T)

Fig. 14 Top and side views of the co-adsorption between hydroxyl and atomic oxygen on Pt(111). a) OH(T)-H(F)+O(F) b) OH(T)-H(H)+O(F) c) $OH(T)-H(F)+O(F)^*$ d) OH(T)-H(H)+O(H)

Fig. 15 Top and side views of the co-adsorption between two hydroxyl on Pt(111). a) OH(T)-H(F)+OH(B)-H(F) b) OH(T)-H(H)+OH(B)-H(H) c) OH(T)-H(B)+OH(T)-H(B) d) OH(T)-H(H)+OH(B)-H(H)*

Fig. 16 Top and side views of the co-adsorption between water and atomic oxygen on Pt(111). a) $H_2O(T)-H(B)H(H)+O(F)$ b) $H_2O(T)-H(B)H(F)+O(H)$

This journal is © The Royal Society of Chemistry [year]