## Assessing the impact of anion- $\pi$ effects on phenylalanine ion formation using IRMPD spectroscopy

## Michael Burt, Kathleen Wilson, Rick Marta, Moaraj Hasan, W. Scott Hopkins and Terry McMahon

## **Supplementary Information**

**1. Optimized Structures.** Figures S1a-g show larger versions of the optimized structures discussed in the article as well as the bond lengths (in Å) of any predicted anion-hydrogen or intramolecular hydrogen bonds. These minima were identified from candidate ions using B3LYP/6-311++G(d,p) density functional theory as implemented by Gaussian 09 (Revision C.01).<sup>1</sup>

2. (PheF<sub>5</sub>-HF)<sup>-</sup> Carbene and Indolecarboxylate Comparison. Figure 3 demonstrates that the sequential removal of HCl and HF from chloride-bound pentafluorophenylalanine results in an indolecarboxylate structure that is 0.9 kJ/mol higher in energy than the most stable PheF<sub>5</sub>Cl<sup>-</sup> isomer. It is also conceivable that a carbene isomer could be formed, but Figure S2 indicates that the lowest energy structure for this product is 130.0 kJ/mol less stable than the indolecarboxylate structure. It is therefore unlikely that it exists in the gas phase.

**3.** HCl, HF, and H<sub>2</sub> Thermochemistry. Table S1 lists the B3LYP/6-311++G(d,p), MP2(full)/6-311++G(2d,2p)//B3LYP/6-311++G(d,p), and MP2(full)/aug-cc-pVTZ//B3LYP/6-311++G(d,p) thermochemistry determined for HCl, HF, and H<sub>2</sub>. These data were used to balance the reaction in Figure 3.

Table S1 Thermochemical information for HCl, HF, and H<sub>2</sub>

hcl

----

B3LYP/6-311++G(d,p) optimization and frequency results: Charge = 0 Multiplicity = 1 Symbolic Z-Matrix: Cl -2.24824 1.13583 0.0

| Zero-point correction= 0.<br>Thermal correction to Energy=<br>Thermal correction to Enthalpy=<br>Thermal correction to Gibbs Free Energy=<br>Sum of electronic and zero-point Energies=<br>Sum of electronic and thermal Energies=<br>Sum of electronic and thermal Enthalpies=<br>Sum of electronic and thermal Free Energy=                                  | $\begin{array}{rcl} 006670 \ (Hartree/Particle) \\ 0.009030 \\ 0.009974 \\ = & -0.011219 \\ s = & -460.827349 \\ & -460.824989 \\ = & -460.824045 \\ sies = & -460.845238 \end{array}$                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Single-point energies:<br>MP2(full)/6-311++G(2d,2p)// B3LYP/6-3<br>MP2(full)/aug-cc-pVTZ//B3LYP/6-311+                                                                                                                                                                                                                                                         | B11++G(d,p) = -460.3284617<br>+G(d,p) = -460.3509096                                                                                                                                                      |
| hf<br><br>B3LYP/6-311++G(d,p)  optimization and<br>Charge = 0 Multiplicity = 1<br>Symbolic Z-Matrix:<br>F -2.06089 0.7377 0.0<br>H -2.94089 0.7377 0.0                                                                                                                                                                                                         | frequency results:                                                                                                                                                                                        |
| Zero-point correction= 0.<br>Thermal correction to Energy=<br>Thermal correction to Enthalpy=<br>Thermal correction to Gibbs Free Energy:<br>Sum of electronic and zero-point Energies=<br>Sum of electronic and thermal Enthalpies=<br>Sum of electronic and thermal Free Energy<br><i>Single-point energies:</i><br>MP2(full)/6-311++G(2d,2p)// B3LYP/6-311+ | $\begin{array}{l} 009331 \ (\text{Hartree/Particle}) \\ 0.011691 \\ 0.012636 \\ = & -0.007076 \\ \text{ss} & -100.473052 \\ & -100.470692 \\ = & -100.469748 \\ \text{gies} & -100.489459 \\ \end{array}$ |
| h <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                           |
| B3LYP/6-311++G(d,p) optimization and<br>Charge = 0 Multiplicity = 1Symbolic Z-Matrix:H0.011340.611342.49412-0.0326H0.611342.49412                                                                                                                                                                                                                              | frequency results:<br>55<br>55                                                                                                                                                                            |
| Zero-point correction= 0.<br>Thermal correction to Energy=<br>Thermal correction to Enthalpy=<br>Thermal correction to Gibbs Free Energy=<br>Sum of electronic and zero-point Energies=<br>Sum of electronic and thermal Energies=<br>Sum of electronic and thermal Enthalpies=                                                                                | $\begin{array}{rl} 010065 \ (Hartree/Particle) \\ 0.012426 \\ 0.013370 \\ = & -0.001426 \\ s = & -1.169506 \\ & & -1.167146 \\ = & -1.166202 \\ sies = & -1.180997 \end{array}$                           |

**4. Natural Bond Order Analyses of Phe25F**<sub>2</sub>**Cl**<sup>-</sup> **and Phe35F**<sub>2</sub>**Cl**<sup>-</sup>. Natural bond order (NBO) analyses were performed on the lowest energy Phe25F<sub>2</sub>**Cl**<sup>-</sup> and Phe35F<sub>2</sub>**Cl**<sup>-</sup> ring isomers to investigate the change in their relative stabilities.<sup>2</sup> Atomic charges are reported in Table S2 and correspond with the atoms labeled in Figure S3. Figure S3 also displays relative atomic charges by colouring the atoms in shades of red or green, which correspond to negative and positive charge; red is brightest at -1.000 and darkens as it approaches zero, green behaves the same, but is brightest at 1.000. The NBO results suggest that the aromatic carbons nearest to the chloride are more positive in the case of Phe25F<sub>2</sub>Cl<sup>-</sup>. This likely explains why its most stable ring isomer is more favourable than the analogous Phe35F<sub>2</sub>Cl<sup>-</sup> structure.

| Atom Label | <u></u> | Atomic Charge |        |  |
|------------|---------|---------------|--------|--|
|            | 2,5-A   | 2,5-B         | 3,5    |  |
| 1 (C)      | 0.401   | 0.407         | -0.267 |  |
| 2 (C)      | -0.251  | -0.232        | 0.439  |  |
| 3 (C)      | -0.270  | -0.250        | -0.333 |  |
| 4 (C)      | 0.395   | 0.406         | 0.434  |  |
| 5 (C)      | -0.252  | -0.237        | -0.276 |  |
| 6 (C)      | -0.042  | -0.073        | 0.005  |  |
| 7 (C)      | -0.402  | -0.406        | -0.403 |  |
| 8 (H)      | 0.213   | 0.218         | 0.218  |  |
| 9 (H)      | 0.238   | 0.207         | 0.193  |  |
| 10 (C)     | -0.137  | -0.100        | -0.101 |  |
| 11 (H)     | 0.248   | 0.195         | 0.195  |  |
| 12 (C)     | -0.859  | -0.879        | -0.880 |  |
| 13 (H)     | 0.364   | 0.398         | 0.400  |  |
| 14 (H)     | 0.350   | 0.342         | 0.335  |  |
| 15 (C)     | 0.792   | 0.800         | 0.801  |  |
| 16 (O)     | -0.721  | -0.716        | -0.714 |  |
| 17 (H)     | 0.486   | 0.499         | 0.499  |  |
| 18 (O)     | -0.663  | -0.653        | -0.653 |  |
| 19 (F/C)   | -0.362  | -0.372        | 0.214  |  |
| 20 (F/C)   | 0.214   | 0.214         | -0.362 |  |
| 21 (C)     | 0.212   | 0.213         | 0.227  |  |
| 22 (F/C)   | -0.370  | -0.366        | -0.362 |  |
| 23 (C)     | 0.257   | 0.227         | 0.229  |  |
| 24 (Cl)    | -0.841  | -0.842        | -0.839 |  |

**Table S2** Atomic charges of Phe $25F_2Cl^-$  and Phe $35F_2Cl^-$  ring isomers.

## References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09*, *Revision C.01*; Gaussian, Inc.: Wallingford, CT, 2010.
- E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales and F. Weinhold, *NBO 5.9*; Theoretical Chemistry Institute, University of Wisconsin: Madison, Wisconsin, 2009. <u>http://www.chem.wisc.edu/~nbo5</u>.