Electronic Supplementary Information

Mesoporous $Li_4Ti_5O_{12-x}/C$ submicrospheres with comprehensively

improved electrochemical performances for high-power lithium-ion

batteries

Chunfu Lin^a, Man On Lai^a, Henghui Zhou^{b*}, Li Lu^{a*}

^a Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore

^b College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.

* Corresponding authors. Tel.: +65 65162236; fax: +65 67791459. E-mail address: luli@nus.edu.sg (L. Lu). Tel.: +86 10 62757908; fax: +86 10 62757908. E-mail address: hhzhou@pku.edu.cn (H. Zhou).

Fig. S1. XRD spectra of P-TiO₂-L, P-TiO₂-M, P-TiO₂-S, TiO₂-L, TiO₂-M and TiO₂-S.

Fig. S2. FESEM images of (a) TiO₂-L, (b) TiO₂-M, (c) TiO₂-S and (d) LTO-S.

Fig. S3. Nitrogen adsorption–desorption isotherms of P-TiO₂-L, P-TiO₂-M, P-TiO₂-S, TiO₂-L, TiO₂-M, TiO₂-S, Li₄Ti₅O_{12-x}/C-L, Li₄Ti₅O_{12-x}/C-M, Li₄Ti₅O_{12-x}/C-S and LTO-S.

Refinement process:

Three constraints for the refinements have been set. Firstly, the site occupancies of the LTO-type crystals in the three composites fulfill stoichiometric composition of $Li_4Ti_5O_{12-x}$, while that of LTO-S follows

 $Li_4Ti_5O_{12}$. Secondly, the contents of Ti^{3+} and Ti^{4+} ions are fixed based on the TG results. Finally, the distribution of ions in the spinel structure is fixed as follows: O^{2-} ions were located at 32e sites; Li^+ and Ti^{4+} ions are distributed at both 16d and 8a sites while Ti^{3+} ions only stay at 16d sites. In principle, Ti^{3+} ions can reside at both 16d and 8a sites. However, it is impossible by the refinements of the X-ray diffraction profiles to distinguish Ti^{3+} and Ti^{4+} ions because these two kinds of ions have very close X-ray scattering factors. Ti^{3+} ion has a octahedral site preference energy (OSPE, 28.89 kJ mol⁻¹) significantly larger than Ti^{4+} ion. Therefore, to proceed the refinements, it can reasonably be assumed that Ti^{3+} ions only stay at 16d sites, while Ti^{4+} ions are distributed in both 16d and 8a sites. In the refinement process, background parameters, zero-shift, unit cell parameters, profile parameters, atomic fractional coordinates, atomic isotropic displacement parameters and atomic occupancies were successively refined.

Reference

[S1] R. G. Burns, Mineralogical Applications of Crystal Field Theory, Cambridge University Press, Cambridge, 2nd edn, 1993.

LTO-S.

Sample	Sphere	Primary particle	Crystallinity	Specific surface	Pore size	Pore volume	Carbon	Tap density	
	size (nm)	size (nm)		area (m 2 g $^{-1}$)	(nm)	$(cm^3 g^{-1})$	content (%)	(g cm ⁻³)	
P-TiO ₂ -L	800±30	_	amorphous	3.35	4.42	0.006	_	_	
P-TiO ₂ -M	_	-	amorphous	4.51	4.92	0.009	-	-	
P-TiO ₂ -S	_	_	amorphous	4.99	5.42	0.011	_	-	
TiO ₂ -L	610±30	~10	poor	35.5	4.04	0.057	_	-	
TiO ₂ -M	_	~10	poor	41.3	3.90	0.063	_	-	
TiO ₂ -S	_	~10	poor	31.0	3.57	0.042	_	-	
$Li_4Ti_5O_{12-x}/C\text{-}L$	530±30	mainly <100	high	12.3	3.92	0.019	1.44	1.41	
$Li_4Ti_5O_{12-x}/C\text{-}M$	_	mainly <100	high	12.2	4.26	0.021	1.28	1.57	
$Li_4Ti_5O_{12-x}/C-S$	_	mainly <100	high	14.6	4.19	0.025	1.06	1.71	
LTO-S	_	200-3000	high	1.52	3.40	0.002	_	1.22	

Table S1. Material characteristics of prepared powders.

Sample	Discharge	Charge	Working	Charge	Charge	Charge	Charge	Charge	First cycle	Capacity	R_{Ω}	R_s	R _{ct}
	potential	potential	potential	capacity	capacity	capacity	capacity	capacity	Coulombic	retention	(Ω)	(Ω)	(Ω)
	at 0.1 C	at 0.1 C	at 0.1 C	at 0.5 C	at 1 C	at 2 C	at 5 C	at 10 C	efficiency	over 100			
	(mV)	(mV)	(mV)	$(mAh g^{-1})$	$(mAh g^{-1})$	$(mAh g^{-1})$	(mAh g ⁻¹)	(mAh g ⁻¹)	(%)	cycles (%)			
Li ₄ Ti ₅ O _{12-x} /C-L	1552.8	1569.0	1560.9	160	152	144	129	108	94.6	95.8	2.08	313	734
Li ₄ Ti ₅ O _{12-x} /C-	1553.9	1567.3	1560.6	162	156	149	133	113	93.8	95.5	2.62	296	635
М													
Li ₄ Ti ₅ O _{12-x} /C-S	1554.7	1566.8	1560.8	163	159	153	138	118	95.0	95.9	2.48	274	474
LTO-S	1556.2	1574.4	1565.3	148	115	72	27	12	96.1	_	3.59	-	1021

 $Table \ S2. \ Electrochemical \ performances \ of \ Li_4 Ti_5 O_{12-x}/C-L, \ Li_4 Ti_5 O_{12-x}/C-M, \ Li_4 Ti_5 O_{12-x}/C-S \ and \ LTO-S \ samples.$