## Helicoidal Supramolecular Arrangement of (1R,2S)-

## Ephedrine within the AFI Structure: Towards a Transfer of

## **Chirality to Mg Spatial Distribution**

Luis Gómez-Hortigüela\*, Teresa Álvaro-Muñoz, Beatriz Bernardo-Maestro and Joaquín

Pérez-Pariente

Instituto de Catálisis y Petroleoquímica, ICP-CSIC. C/ Marie Curie 2, 28049. Madrid,

Spain.

Corresponding Author: LGH; Email: lhortiguela@icp.csic.es

## **Supporting Information**

Inter-dimer angles, defined as the rotation angle around the c (channel) axis between the planes of the aromatic rings of consecutive dimers, were calculated as the average of the two torsion angles between  $C_m(dim1)-C_{m'}(dim1)-C_m(dim2)-C_m(dim2)$  atoms of the two molecules composing the dimer, where  $C_m$  and  $C_{m'}$  corresponds to the two *meta*-C atoms of EPH:



**Figure S1.** Definition of the inter-dimer angle as the angle between the planes of the aromatic rings of EPH molecules in consecutive dimers (left), calculated as the average between the two torsion angles between the  $C_m$  and  $C_m$ , atoms of consecutive dimers.



**Figure S2.** Inter-dimer angle distribution of 18AFI-24EPH systems with different initial angles during the MD simulations.



Figure S3. Left: Intermolecular H-bond formation as a function of H(N) atom for the helix+30 system: RDF (during the MD simulations) between O and H(1)-N (blue line) or H(2)N (red line) atoms. Right: Intermolecular H-bond formation with H(2)N atoms for the different systems: RDF (during the MD simulations) between O and H(2)-N atoms.

















**Figure S4.** Arrangement of (1R,2S)-EPH dimers at different rotation angles in the undoped AFI systems (after MD+GO) (24EPH-18AFI model).



**Figure S5.** Left: interaction energy (in kcal/mol per u.c.) of the relaxed systems after MD and GO (model 18AFI-24EPH), decomposed in Van der Waals and electrostatic terms; right: interaction energy (in kcal/mol per u.c.) of the relaxed systems after MD and GO (model 18AFI-24EPH) as a function of the atomic charge distribution (blue: B3LYP charges: red: force-field-assigned charges).



**Figure S6.** Interaction energy (in kcal/mol per u.c.) of the relaxed systems after MD and GO (model 18AFI-24EPH) as a function of the interdimer angle, for a system with all protonated EPH molecules (red line) and half protonated and half neutral molecules (blue line).



**Figure S7.** N····Mg distance as a function of the simulation time (left) and corresponding RDF (right) for a system with 1 Mg in a 1x1x3 AFI supercell with one protonated EPH loaded.



**Figure S8.** Radial Distribution Functions between H(N) atoms and Cl<sup>-</sup> anions (blue line) and between aromatic C atoms and Cl<sup>-</sup> anions (red line) during simulations in water (model 16EPH:640w:16Cl; see ref. 31 for details).