Table 2-ESI. $\Gamma_{X S}$ representation products corresponding to electric dipole allowed transitions in $\mathrm{D}_{2 \mathrm{~h}}$ symmetry. ${ }^{\text {a,b }}$

$$
\begin{aligned}
& \otimes a_{g} b_{1 g} b_{2 g} b_{3 g} a_{u} b_{1 u} b_{2 u} b_{3 u} \\
& \mathrm{a}_{\mathrm{g}} \\
& b_{1 u} b_{2 u} b_{3 u} \\
& b_{1 g} \quad b_{1 u} \quad b_{3 u} b_{2 u} \\
& b_{2 g} \quad b_{2 u} b_{3 u} \quad b_{1 u} \\
& b_{3 g} \quad b_{3 u} b_{2 u} b_{1 u} \\
& a_{u} \quad b_{1 u} b_{2 u} b_{3 u} \\
& b_{1 u} b_{1 u} \quad b_{3 u} b_{2 u} \\
& b_{2 u} b_{2 u} b_{3 u} \quad b_{1 u} \\
& b_{3 u} b_{3 u} b_{2 u} b_{1 u}
\end{aligned}
$$

${ }^{\mathrm{a}} \Gamma_{X S}=\mathrm{b}_{1 \mathrm{u}}$ implies 1s $\boldsymbol{\boldsymbol { \sigma }} \pi^{*}$ transitions involving $p c m$-based $\pi_{\perp} *$ MOs. ${ }^{\mathrm{b}} \Gamma_{X S}=\mathrm{b}_{2 \mathrm{u}}$ or $\mathrm{b}_{3 \mathrm{u}}$ implies 1 s π^{*} transitions involving Ph - and F-based $\pi_{\|}{ }^{*}$.

