Supplementary information for

Structural Transformation and Tuning Behavior Induced by Propylamine Concentration in Hydrogen Clathrate Hydrates

Seongmin Park,[†] Hyery Kang,[†] Kyuchul Shin,[‡] Yutaek Seo^{*,§} and Huen Lee^{*,†}

[†]Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea

^{*}Department of Applied Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Republic of Korea

[§]Division of Ocean Systems Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-

701, Republic of Korea

* To whom correspondence should be addressed.

E-mail : hlee@kaist.ac.kr, yutaek.seo@kaist.ac.kr

Table of Contents

Figure S1. Refined PXRD patterns of i-PA + H₂ binary hydrates by structure-less Le Bail method. (a) 11.1 mol% *i*-PA and (b) 5.6 mol% *i*-PA samples.

Figure S2. Refined PXRD patterns of *n*-PA + H₂ binary hydrates by structure-less Le Bail method. (a) 13.3 mol% *n*-PA and (b) 5.6 mol% *n*-PA samples. The 5.6 mol% sample contains considerable amount of monoclinic $P2_1/n$ phase, but it was not included in the Le Bail fitting because of too many reflections of the phase.

Figure S3. PXRD patterns of *i*-PA + H₂ binary hydrates. (a) 3 mol% *i*-PA (*Fd-3m* phase, a = 17.194(2) Å) and (b) 1 mol% *i*-PA (*Fd-3m* phase, a = 17.164(2) Å) samples. Tick marks of the second row indicate reflections from the hexagonal ice.

Figure S4. PXRD patterns of *n*-PA + H₂ binary hydrates. (a) 3 mol% *n*-PA (*Fd-3m* phase, *a* = 17.184(1) Å) and (b) 1 mol% *n*-PA (*Fd-3m* phase, *a* = 17.191(3) Å) samples. Tick marks of the second row indicate reflections from the hexagonal ice.

Figure S1. Refined PXRD patterns of i-PA + H₂ binary hydrates by structure-less Le Bail method. (a) 11.1 mol% *i*-PA and (b) 5.6 mol% *i*-PA samples.

Figure S2. Refined PXRD patterns of *n*-PA + H₂ binary hydrates by structure-less Le Bail method. (a) 13.3 mol% *n*-PA and (b) 5.6 mol% *n*-PA samples. The 5.6 mol% sample contains considerable amount of monoclinic $P2_1/n$ phase, but it was not included in the Le Bail fitting because of too many reflections of the phase.

Figure S3. PXRD patterns of *i*-PA + H₂ binary hydrates. (a) 3 mol% *i*-PA (*Fd-3m* phase, a = 17.194(2) Å) and (b) 1 mol% *i*-PA (*Fd-3m* phase, a = 17.164(2) Å) samples. Tick marks of the second row indicate reflections from the hexagonal ice.

Figure S4. PXRD patterns of *n*-PA + H₂ binary hydrates. (a) 3 mol% *n*-PA (*Fd-3m* phase, *a* = 17.184(1) Å) and (b) 1 mol% *n*-PA (*Fd-3m* phase, *a* = 17.191(3) Å) samples. Tick marks of the second row indicate reflections from the hexagonal ice.