Ultrafast photoinduced charge transport in Pt(II) donor-acceptor assembly bearing naphthalimide electron acceptor and phenothiazine electron donor **Supplementary Information**

Igor V. Sazanovich,^{1,2,*} Jonathan Best,¹ Paul A. Scattergood,¹ Michael Towrie,³ Sergei A. Tikhomirov,⁴ Oleg V. Bouganov,⁴ Anthony J. H. M. Meijer,^{1,†} and Julia A. Weinstein^{1,‡}

¹Department of Chemistry, University of Sheffield, S3 7HF Sheffield

²Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, STFC, Chilton, Oxfordshire, OX11 0QX, U.K. ³Central Laser Facility, Rutherford Appleton Laboratory,

Harwell Science and Innovation Campus, STFC, Chilton, Oxfordshire, OX11 0QX, U.K.

⁴B. I. Stepanov Institute of Physics, Prosp. Nezavisimosti, 68, Minsk, 220072, Belarus (Dated: October 20, 2014)

^{*} igor.sazanovich@stfc.ac.uk

[†] a.meijer@sheffield.ac.uk

[‡] julia.weinstein@sheffield.ac.uk

S1. Additional Figures: Experimental Section	S3
S2. Analytical data for 1	S7
S2.1. Cyclic Voltammetry	S7
S2.2. Spectroscopic Studies	S7
S2.3. Electronic Transient Absorption Spectroscopy	S8
S2.4. Picosecond Time-Resolved IR spectroscopy	S8
S2.5. Flash-photolysis data for 1	S9
S3. Compound 1 (¹ A)	S10
S3.1. General Information	S10
S3.2. Cartesian Co-ordinates (XYZ format)	S10
S3.3. TD-DFT Calculations	S13
S3.4. Molecular Orbitals	S13
S4. Compound 1 (¹ A) Alternative isomer	S16
S4.1. General Information	S16
S4.2. Cartesian Co-ordinates (XYZ format)	S16
S5. Compound 1 (³ A)	S19
S5.1. General Information	S19
S5.2. Cartesian Co-ordinates (XYZ format)	S19
S5.3. TD-DFT Calculations	S21
S5.4. Molecular Orbitals	S22
S6. Compound 1 (T ₂)	S23
S6.1. General Information	S23
S6.2. Cartesian Co-ordinates (XYZ format)	S23
S7. Compound 1 (3 A) Alternative isomer	S26
S7.1. General Information	S26
S7.2. Cartesian Co-ordinates (XYZ format)	S26
S7.3. TD-DFT Calculations	S28
S8. Chromophoric Core, (phen) $Pt(-CC-Ph)_2$ (S ₀)	S30
S8.1. General Information	S30
S8.2. Cartesian Co-ordinates (XYZ format)	S30
S9. Chromophoric Core, (phen) $Pt(-CC-Ph)_2$ (T ₁)	S32
S9.1. General Information	S32
S9.2. Cartesian Co-ordinates (XYZ format)	S32

FIG. S1. The ¹H NMR spectrum of $\mathbf{1}$ in CDCl₃.

FIG. S2. COSY ¹H NMR spectrum of 1 in CDCl₃. The signals in the NMR are coloured and correspond to the highlighted protons on the complex.

FIG. S3. Cyclic voltommogram of a 1.5 mM CH_2Cl_2 solution of (phen) $Pt(C \equiv C - C_6H_4 - CH_3)_2$ recorded at 100 mVs⁻¹ with 0.2 M [NBu₄][PF₆] as supporting electrolyte. All potentials are quoted against the Fc⁺/Fc internal reference.

FIG. S4. Structure for the alternative conformation of [1]. Panel (a): Singlet ground (S_0) state. Panel (b): First excited Triplet (T_1) state

FIG. S5. UV-VIS spectrum for the ground singlet (S_0) .

¹H NMR (CDCl₃, Figure S1): 0.90 (t, J = 7.03 Hz, 3H, H₃₂), 1.24 – 1.46 (m, 8H, H₂₈₋₋₃₁), 1.46 – 1.55 (m, 2H, H₂₇), 1.78 – 1.88 (m, 2H, H₂₆), 4.26 (t, J = 7.68, 2H, H₂₅), 5.00 (s, 2H, H_{9b}), 5.04 (s, 2H, H_{9a}), 6.62 (dd, J = 0.85, 8.15 Hz, 2H, H_{4b,5b}), 6.69 (dd, J = 0.85, 8.07 Hz, 2H, H_{4a,5a}), 6.75 (dt, J = 1.06, 7.37 Hz, 2H, H_{2b,7b}), 6.82 (dt, J = 1.08, 7.46 Hz, 2H, H_{2a,7a}), 6.86 – 7.01 (m, 8H, H_{1,3,6,8}), 7.05 (d, J = 8.29 Hz, 2H, H_{10b,13b}), 7.15 (d, J = 8.24 Hz, 2H, H_{10a,13a}), 7.32 (d, J = 8.13 Hz, 2H, H_{11b,12b}), 7.40 (d, J = 8.20 Hz, 2H, H_{11a,12a}), 7.58 (dd, J = 5.10, 8.38 Hz, 1H, H₁₅), 7.72 – 7.81 (m, 2H, H_{19,17}), 8.17 (d, J = 8.37 Hz, 1H, H₁₆), 8.29 (d, J = 8.12 Hz, 1H, H₁₈), 8.70 (s, 4H, H₂₁₋₋₂₄), 9.86 (d, J = 5.02 Hz, 1H, H₁₄), 9.92 (d, J = 5.02 Hz, 1H, H₂₀). MALDI-MS: m/z = 1376 (M⁺), 1178 (M⁺ –PTZ).

From the COSY ¹H NMR spectrum (Figure S2), spin-spin coupling allowed the specific assignment of the NMR peaks. H_{14} and H_{20} on phenanthroline (highlighted in blue) were strongly deshielded by the close proximity of nitrogen and appear as doublets at 9.86 and 9.92 ppm in the spectrum. Protons 14 and 20 could be seen to be spin-spin coupled with the doublet of doublets at 7.75 and 7.58 ppm, which were assigned to H_{15} and H_{19} . These were also spin-spin coupled with the peaks at 8.17 and 8.29 ppm which were assigned as protons 16 and 18. H_{17} occurred as a singlet at approximately 7.72 ppm and did not have any spin-spin coupling with other nuclei. Four doublets were observed at 7.05, 7.15, 7.32 and 7.40 ppm. The doublet at 7.05 ppm was coupled to the one at 7.32 ppm, while the one at 7.15 ppm was coupled to that at 7.40 ppm. These protons were assigned to the benzyl fragment of the acetylide ligand. Protons 21 – 24 on the naphthalene diimide were all magnetically equivalent which resulted in a singlet observed at 8.70 ppm corresponding to 4H. Two doublets and two triplets could clearly be seen upfield between 6.62 and 6.82 ppm with the second pair of doublets and triplets overlapping between 6.86 and 7.01 ppm. These were all assigned to the two phenothiazine moieties and although the peaks relating to the individual phenothiazines could be determined, it was difficult to identify which phenothiazine was which.

The synthesis of compound **2**, ((COOEt)₂by)Pt(C≡C–PTZ)₂ was performed in the following way. N–(4– ethynylbenzyl)–phenothiazine (200 mg, 0.64 mmol), CuI (12 mg, 0.06 mmol), Pt((COOEt)₂bpy)Cl₂ (185 mg, 0.33 mmol) and diisopropylamine (6 ml, 4.33 g, 42.89 mmol) were sonicated in degassed CH₂Cl₂ (30 ml) in the dark for 7 hrs. A colour change from orange to red was observed. The reaction was stirred for 3 days, diluted with CH₂Cl₂ (20 ml) and washed with H₂O (50 ml) and acetic acid (2 ml). The organic layer was dried with MgSO₄, filtered and reduced in volume. The product precipitated on addition of diethyl ether, dried under vacuum and purified by column chromatography (alumina / CH₂Cl₂). The product was precipitated on addition of hexane, filtered and dried under vacuum. Yield = 99 mg, 0.09 mmol (28%). ¹H NMR (CDCl₃): 1.46 (t, *J* = 7.28 Hz, 6H, H₅), 4.49 (q, *J* = 7.13 Hz, 4H, H₄), 5.07 (s, 4H, H₈), 6.66 (d, *J* = 8.17 Hz, 4H, H₁₂), 6.86 (dt, *J* = 0.86, 7.47 Hz, 4H, H₁₀), 6.98 (dt, *J* = 1.48, 7.91 Hz, 4H, H₁₁), 7.08 (dd, *J* = 1.47, 7.53 Hz, 4H, H₉), 7.20 (d, *J* = 8.19 Hz, 4H, H₆ or H₇), 7.46 (d, *J* = 8.17 Hz, 4H, H₇ or H₆), 8.11 (dd, *J* = 1.49, 5.69 Hz, 2H, H₂), 8.66 (s, 2H, H₃), 9.98 (d, *J* = 5.67, 2H, H₁). RMM PtC₅₈H₄₄N₄O₄S₂ = 1120.20 g mol⁻¹. Elemental analysis: measured / % (calculated for PtC₅₈H₄₄N₄O₄S₂•(CH₂Cl₂)_{0.25} / %) C 61.12 (61.29), H 3.94 (3.93), N 4.96 (4.91). MALDI mass spectrometry: m/z = 1120 (M⁺), 922 (M⁺ –PTZ), 724 (M⁺ –2x PTZ).

S2.1. Cyclic Voltammetry

Cyclic voltammograms were recorded using an Autolab Potentiostat 100 using General Purpose Electrochemical Software (GPES) version 4.9. Analyte solutions were prepared using dry reagent grade dichloromethane to give a concentration of 1.50 mmoldm⁻³. [NⁿBu₄][PF₆] was employed as supporting electrolyte, being recrystallised and oven dried prior to use. The concentration of electrolyte in solution was 0.2 moldm⁻³. Solutions were degassed with solvent saturated nitrogen, with a positive pressure of N₂ being maintained during the measurements. The working electrode was a Platinum disc, the counter electrode a Platinum wire and a Ag/AgCl reference electrode which was chemically isolated from the analyte solution by an electrolyte containing bridge tube tipped with a porous frit. All potentials are quoted against the ferrocinium-ferrocene couple, employed in each experiment as an internal standard.

S2.2. Spectroscopic Studies

In-house facilities were used for CHN and EI MS analysis. The following instruments were used: absorption spectra, a Cary 50 Bio UV-Visible spectrophotometer; ¹H NMR spectra (presented as δ in ppm and J in Hz), a Bruker 250 MHz spectrometer.

Ground state FTIR data were obtained on N₂-purged Spectrum One FTIR spectrometer (Perkin Elmer).

S2.3. Electronic Transient Absorption Spectroscopy

Picosecond Transient Absorption experiments were performed at B.I. Stepanov Institute of Physics, Minsk, on pump-probe spectrometer based on a home-made original fs Ti:Sapph pulsed oscillator and regenerative amplifier system operated at 10 Hz repetition rate. A. P. Blokhin, Gelin, M.; Buganov, O.; Dubovskii, V.; Tikhomirov, S.; Tolstorozhev, G. B. J. Appl. Spectrosc. 2003, 70, 70-78.] Ti:Sapph master oscillator was synchronously pumped with doubled output of home-made mode-locked picosecond pulsed Nd:YAG laser. The regenerative amplifier was pumped with ns Q-switched Nd:YAG laser LS-2134 (LOTIS TII). The pulse width and energy of Ti:Sapph system after the amplifier were ca. 150 fs and 0.5 mJ, respectively, tuneable over the spectral range 760 - 820 nm. The fundamental output of Ti:Sapph system (790 nm output wavelength was set for present study) was split into two beams in the ratio 1:4. The more intense beam was passed through a controlled delay line and after frequency doubling (to provide 395 nm radiation) was utilised for sample pumping. The energy of 395 nm pump pulses was ca. $40 \ \mu\text{J}$, being focused to 500 $\mu m \ge 500 \mu m$ spot on the sample. The second beam of the fundamental frequency was used for generation of a femtosecond supercontinuum (by focusing into 1 cm pathlength cell filled with water), which served as the probe radiation. The continuum probe light was split with a beam splitter into two pulses (reference and signal) and the signal was focused on the sample by mirror optics. The spectra of both pulses were recorded for each laser flash by spectrometer equipped with CCD camera and transferred to the computer. All the measurements were performed in quartz cells with 1 mm path. The pump beam was polarized at "magic angle" with respect to the probe. The time resolution of the setup is limited by the pump and probe pulse duration and estimated as ca. 0.2 ps.

S2.4. Picosecond Time-Resolved IR spectroscopy

The studies of compound **2** were performed in the Laser for Science Facility, Rutherford Appleton Laboratory, on the PIRATE setup which was described in detail elsewhere. [M. Towrie, D. C. Grills, J. Dyer, J. A. Weinstein, P. Matousek, R. Barton, P. D. Bailey, N. Subramaniam, W. M. Kwok, C. Ma, D. Phillips, A. W. Parker and M. W. George Appl. Spec. 2003, **57**, 367 – 380]. The estimate of time resolution of TRIR setup is ca. 0.4 ps for these experiments. Briefly, part of the output from a 1 kHz, 800 nm, 150 fs, 1 mJ Ti:Sapphire oscillator/regenerative amplifier was used to pump a white light continuum seeded BBO OPA. The signal and idler produced by this OPA were difference frequency mixed in a type I AgGaS₂ crystal to generate tuneable mid-infrared pulses (ca. 150 cm⁻¹ FWHM, 0.1 μ J). Second harmonic generation of the residual 800 nm light provided 400 nm pulses, which were used to excite the sample (typical excitation energy 3 μ J, focus 150 x 150 μ m²). All measurements were carried out at magic angle polarization. Changes in infrared absorption were recorded by normalising the outputs from a pair of 64-element HgCdTe linear array detectors on a shot-by-shot basis. A solution of **2** in CH₂Cl₂ was flown through IR Harrick cell (100-500 μ m pathlength) over the course of the experiment to supply fresh sample solution into the photoexcited volume. The sample cell was mounted on a 2D-translational stage which was raster-scanned in x and y directions during irradiation. The FTIR spectra recorded before and after TRIR experiments confirm the absence of the photodegradation.

The studies of compound 1 were performed in the Laser for Science Facility, Rutherford Appleton Laboratory, on both PIRATE and ULTRA setups. The ULTRA setup has been described in detail previously. G. Greetham, P. Burgos, Q. Cao, I. Clark, P. Codd, R. Farrow, M. W. George, M. Kogimtzis, P. Matousek, A. W. Parker, M. Pollard, D. Robinson, Z.-J. Xin and M. Towrie, Appl. Spectrosc. 2010, 64, 1311–1319.] Briefly, a 65 MHz Ti:Sapphire oscillator synchronously seeded a pair of regenerative amplifiers (Thales) operating at 10 kHz repetition rate. One amplifier was configured to produce 40 fs duration pulses with broad bandwidth. Second harmonic generation of part of the 800 nm output from the femtosecond amplifier produced pulses of ~ 50 fs at 400-nm for sample excitation. Approximately 0.4 mJ of the 50-fs, broadband output pulse train pumped a TOPAS OPA, and difference frequency mixing of the signal and idler components generated mid-IR pulses with $\sim 400 \text{ cm}^{-1}$ bandwidth and $\sim 50 \text{ fs pulse}$ duration at the output of the OPA to be used as a probe beam. All measurements were carried out at magic angle polarization. The 400 nm pump beam energies were $\sim 2 \mu J$ per pulse, and the pump and IR probe beam diameters at the sample were, respectively, ~ 100 and 70 μ m. The IR radiation transmitted by the solution was dispersed by a grating onto a pair of 128-element HgCdTe array detectors (IR Associates), providing broad (i.e. $\sim 400 \text{ cm}^{-1}$) spectral coverage with every laser pulse. The overall instrument response time was ~ 200 fs. A reference spectrum of the laser pulse was accumulated on a third, 64-element array detector and used to remove the effects of laser fluctuations from transient absorption data. The sample solution was flown through IR Harrick cell (100-500 μ m pathlength) over the course of the experiment to supply fresh sample solution into the photoexcited volume. The sample cell was mounted on a 2D-translational stage which was raster-scanned in x and y directions during irradiation. The FTIR spectra recorded before and after TRIR experiments confirm the absence of the photodegradation.

FIG. S6. Representative transient absorption decay traces, obtained for **1** in CH₂Cl₂ by nanosecond flash photolysis. The black solid lines represent the fitting curves. The decay times yielded by the fit: $\tau_1=36\pm4$ ns and $\tau_2=107\pm11$ ns.

S3. COMPOUND 1 (1 A)

S3.1. General Information

С	-3.52740860	-1.32355094	-0.00757718
С	-4.18698120	-0.08536840	-0.14615865
С	-3.44292712	1.07014632	-0.24409337
С	-2.04401946	1.00100672	-0.20372093
Ν	-1.39766717	-0.15430555	-0.07558342
С	-2.11670804	-1.30929804	0.02022404
С	-1.38271809	-2.53188419	0.15022071
С	-2.07004285	-3.75698042	0.25710303
С	-3.50126958	-3.75202608	0.23420925
С	-4.19679499	-2.59253764	0.10710230
Ν	-0.02166045	-2.45546818	0.16426453
С	0.68421841	-3.57730532	0.28338662
С	0.07586904	-4.83577728	0.39444387
С	-1.29886425	-4.93142605	0.38207546
Pt	0.71473128	-0.46023408	-0.00365658
С	1.20057237	1.42985499	-0.15874270
С	2.61240792	-0.93183190	0.06812989
С	3.78712988	-1.26456082	0.11425300
С	1.46162260	2.61930823	-0.25796625
С	5.16370630	-1.63483274	0.17461936
С	1.77022612	4.00684261	-0.38241220
С	5.57822657	-2.96001482	-0.04844945
С	6.15862751	-0.67800516	0.46227735
С	7.49711943	-1.03865623	0.52259600
С	7.90284443	-2.36059117	0.29912040

\mathbf{C}	6.92313099	-3.31279349	0.01288257
С	3.00541067	4.43119335	-0.91349649
\mathbf{C}	3.30080009	5.78140116	-1.03742290
$\tilde{\mathbf{C}}$	2 38551831	6 76379681	-0.63852042
$\hat{\mathbf{C}}$	1 1618/771	6 350/3907	-0.10911173
C C	0.85658002	4 00853030	0.01700837
C	0.0000002	4.99000009	0.01109031
a	9.39078808	-2.08728390	0.37902308
C V	2.77418661	8.22977066	-0.80360019
Ν	9.80028534	-4.07338667	0.15803915
Ν	1.81103396	9.24475193	-0.37906694
С	9.77081108	-4.97511959	1.24534702
С	10.00957966	-4.51955748	-1.16625428
С	10.79911137	-5.65457439	-1.43042648
\mathbf{S}	11.69004345	-6.44340944	-0.10266966
С	10.53568172	-6.15670156	1.22551966
$\tilde{\mathbf{C}}$	8 98286915	-5 60740805	3 46147871
$\hat{\mathbf{C}}$	8 00100008	-4 72200883	2 38520110
C C	10 48803034	7 05052072	2.30525110
d d	0.70110045	-1.03932012	2.20002107
C a	9.72119045	-0.78508508	3.41559601
C	9.45105743	-3.84458256	-2.26288199
C	9.67741776	-4.28023863	-3.56705427
С	10.43636608	-5.41981077	-3.81109738
С	10.98540688	-6.11109257	-2.73305154
С	1.78752375	9.63662624	0.97837824
С	1.22402942	10.86688709	1.36608350
\mathbf{S}	0.68745911	12.02726364	0.12322199
С	0.13649037	10.87683392	-1.12246060
С	0.80052549	9.64581585	-1.28136265
С	2.32273555	9.22579765	3.31852150
С	1.73706341	10.43120956	3.69018364
С	1.17679513	11.24328518	2.70624924
С	2.33311152	8.82383728	1.98427022
С	-0.87818569	11.26214409	-1.99532104
Č	-1.22183383	10.45889759	-3.08078885
С	-0.55410647	9.25326443	-3.26706886
Ċ	0.43098298	8.84210110	-2.37120581
Ň	-5.64003277	-2.62730718	0.08437000
C	-8 45243359	-2 76342821	0.05290585
$\tilde{\mathbf{C}}$	-7 78538656	-2 55615234	1.28277755
$\hat{\mathbf{C}}$	-6 30552202	-2 /800580/	1 32237542
C C	6 26043367	2 82857060	1.16050262
C C	7 74111080	2.02037000	1 16187048
C C	0.87017727	2.30031041	0.03721680
C C	-9.01011121	2.03431300	1.03721080
C	-10.36709417	-2.09771401	1.24091009
C C	-9.91232360 9 EDDEEE93	-2.49571490	2.43033621
C C	-0.00900002	-2.42423133	2.40412421
C	-8.42204303	-3.10201178	-2.348/20/0
C	-9.82523727	-3.17609191	-2.36142683
C N	-10.54341602	-3.04392195	-1.18737543
N	-12.69690895	-2.95932412	0.00373563
C	-12.07349014	-2.76991463	1.24299061
C	-12.02858543	-3.12259793	-1.21563840
Ο	-5.59152317	-2.93081737	-2.17700577
O	-5.67174339	-2.30237103	2.34203815
Ο	-12.64605522	-3.31748009	-2.24722695
Ο	-12.72819042	-2.66888881	2.26501727
С	-14.17604542	-3.02423859	-0.01425739
\mathbf{C}	-14.70201302	-4.44574213	0.17508793
Η	-14.52682209	-2.37336016	0.78338724
Η	-14.49501038	-2.61882997	-0.97184300
Η	-14.38157654	-4.85721922	1.13427901
Η	-15.79461956	-4.43577909	0.15695104
Η	-14.35465717	-5.10167122	-0.62555718
Н	-10.47911453	-2.39343333	3.35237885

Η	-7.98023510	-2.26591969	3.38468671
Η	-10.35842705	-3.33621883	-3.28927588
Η	-7.85967493	-3.20444798	-3.26739550
Η	-4.02970886	-4.69348669	0.31899884
Η	-1.79161906	-5.89249229	0.46673644
Η	0.69881362	-5.71515417	0.48876092
Η	1.76027167	-3.46123934	0.29059586
Η	-1.42533076	1.88604629	-0.27585059
Η	-3.92028213	2.03488541	-0.35167378
Η	-5.26776981	-0.04585627	-0.17636302
Η	0.90635395	7.88296747	-2.52092862
Η	-0.80541611	8.61181450	-4.10377359
Η	-1.99874318	10.77511692	-3.76625633
Η	-1.38097990	12.20897102	-1.83407450
Η	0.72030056	12.18994331	2.97223663
Η	1.71332467	10.74027634	4.72813463
Η	2.76308894	8.57727051	4.06693554
Η	3.70267487	8.41588688	-0.25686666
Η	3.00361919	8.42130756	-1.85548735
Η	4.25991488	6.07812071	-1.45149302
Η	0.43537807	7.08854771	0.20965184
Η	-0.09882327	4.70024538	0.43256342
Η	3.72776175	3.68732452	-1.22798610
Η	4.83491945	-3.71564674	-0.27403602
Η	5.86574173	0.35020399	0.63829917
Η	8.24081230	-0.27987093	0.74737358
Η	7.20815849	-4.34310627	-0.16435961
Η	9.93061352	-2.07077980	-0.34443793
Η	9.76731205	-2.39162278	1.36274314
Η	8.82603645	-2.97742844	-2.10247707
Η	9.23919106	-3.72765493	-4.39000177
Η	10.60203743	-5.77051163	-4.82253551
Η	11.58537579	-6.99846411	-2.89999747
Η	11.07651234	-7.96834040	2.23001575
Η	9.70502186	-7.48326540	4.24368286
Η	8.37831116	-5.37369871	4.33013296
Η	8.37891579	-3.83318758	2.43427300
Η	2.76189637	7.86458111	1.73069859

S3.3. TD-DFT Calculations

No.	$\frac{\rm Energy}{\rm (cm^{-1})}$	Wave length (nm)	Osc. Strength	Major contributions
7	18402	543.41	0.06	$H-2 \rightarrow L+1 \ (98\%)$
11	19918	502.06	0.06	$H-3 \rightarrow L+1 \ (52\%), H-2 \rightarrow L+2 \ (47\%)$
12	20754	481.83	0.23	$H-3 \rightarrow L+1 \ (47\%), H-2 \rightarrow L+2 \ (52\%)$
16	21877	457.10	0.04	H-3 \rightarrow L+2 (98%)
25	26184	381.91	0.12	H-16→LUMO (13%), H-15→LUMO (12%), H-14→LUMO (14%), H-13→LUMO (12%), H-9→LUMO (25%)
26	26552	376.62	0.35	H-21 \rightarrow LUMO (14%), H-16 \rightarrow LUMO (19%), H-15 \rightarrow LUMO (55%)
28	26905	371.67	0.04	H-21 \rightarrow LUMO (63%), H-8 \rightarrow L+1 (16%)
50	29778	335.82	0.14	H-2 \rightarrow L+5 (95%)
56	31085	321.70	0.05	H-16 \rightarrow L+1 (10%), H-3 \rightarrow L+5 (72%)
57	31224	320.26	0.04	H-26→LUMO (45%), H-22→LUMO (47%)
61	31563	316.83	0.09	H-16 \rightarrow L+1 (28%), H-3 \rightarrow L+5 (21%)
64	32009	312.41	0.04	H-17 \rightarrow L+1 (22%), H-14 \rightarrow L+1 (14%), H-13 \rightarrow L+1 (14%), H-11 \rightarrow L+1 (22%), H-9 \rightarrow L+1 (17%)
65	32441	308.25	0.65	H-2 \rightarrow L+7 (84%)
69	32669	306.10	0.06	$H-1 \rightarrow L+14 \ (50\%), H-1 \rightarrow L+15 \ (27\%)$
70	32681	305.99	0.13	HOMO \rightarrow L+14 (31%), HOMO \rightarrow L+15 (47%)
84	34121	293.08	0.11	H-16 \rightarrow L+1 (10%), H-15 \rightarrow L+2 (16%), H-14 \rightarrow L+2 (17%), H-11 \rightarrow L+2 (17%)
90	34650	288.60	0.06	$H-28 \rightarrow LUMO (83\%)$
92	34956	286.08	0.15	H-11 \rightarrow L+2 (12%), H-2 \rightarrow L+8 (31%), H-2 \rightarrow L+18 (16%)

Table with most important transitions (f > 0.04)

S3.4. Molecular Orbitals

FIG. S7. Frontier orbitals Singlet state [1]

FIG. S8. Selected other orbitals Singlet state [1]

COMPOUND 1 (¹A) ALTERNATIVE ISOMER **S4**.

S4.1. General Information

Formula Charge Multiplicity Dipole Energy Number of imaginary frequencies :

SMILES

S4.2. Cartesian Co-ordinates (XYZ format)

1	0	7
т	4	1

:

:

\mathbf{C}	4.41990376	-0.45382598 -0.15056005
\mathbf{C}	4.87201023	0.87679851 -0.26111439
\mathbf{C}	3.95209217	1.89620662 -0.37537399
\mathbf{C}	2.58285594	1.59882736 - 0.38105991
Ν	2.13052273	0.35227379 -0.27775320
\mathbf{C}	3.02561164	-0.67036206 -0.16218074
\mathbf{C}	2.49796629	-1.99679089 -0.05013813
\mathbf{C}	3.37330985	-3.09401512 0.07078807
\mathbf{C}	4.78481340	-2.85608196 0.07787866
\mathbf{C}	5.28447819	-1.59778595 -0.02796252
Ν	1.14258182	-2.14308405 -0.06567105
\mathbf{C}	0.62669057	-3.36543179 0.03659693
\mathbf{C}	1.42947662	-4.50843716 0.16046800
\mathbf{C}	2.80137229	-4.37893295 0.17814550
\mathbf{Pt}	0.09621671	-0.29389092 -0.26596114
\mathbf{C}	-0.68782353	1.49081051 - 0.44658574
\mathbf{C}	-1.70140743	-1.06866980 -0.23870555
\mathbf{C}	-2.80530047	-1.59178853 -0.21422783
С	-1.14163482	2.62011862 - 0.55377525
\mathbf{C}	-4.09918785	-2.19258404 -0.18890567

-4240.07819211 a.u.

С	-1.67916572	3.93702674	-0.66734689
С	-4.27881432	-3.52925158	0.20966323
С	-5.24567366	-1.46230817	-0.56334412
С	-6.50325680	-2.04833627	-0.53733969
Ċ	-6.67464495	-3.38019753	-0.13877273
Ċ	-5.54373121	-4.10883856	0.23359200
č	-2 97338986	4 23572969	-0 20438787
c	3 40553442	5 50108170	0.31074157
c	-3.45000442 2.75086027	6 55444002	0.88261206
c	1 46228020	6 26242010	1 24204666
C	-1.40236029	4 08466201	1.04004000
C	-0.95522959	4.98400301	-1.24440091
C C	-0.00490572	-5.90208900	-0.15121425
C N	-3.26965857	7.98204041	-1.02559316
IN	-8.24737358	-5.35468054	0.28419098
N	-4.61148357	8.27716255	-0.52547038
С	-8.07056522	-6.37708044	-0.67487955
С	-8.36125469	-5.64619350	1.66216946
С	-8.93507290	-6.85457468	2.10045838
\mathbf{S}	-9.68709850	-7.95860052	0.91956848
\mathbf{C}	-8.61484623	-7.65953159	-0.47311240
С	-7.20512247	-7.15941620	-2.81290531
С	-7.35974932	-6.15068722	-1.86392844
С	-8.41889000	-8.67635059	-1.40452278
С	-7.72353935	-8.42990875	-2.58660054
Ċ	-7.91966343	-4.74192619	2.64072633
Č	-8.05156231	-5.02939034	3.99788690
$\tilde{\mathbf{C}}$	-8 59400654	-6 23989916	4 41570997
c	0.02364540	7 15565401	3 45745015
c	4 77603388	8 50257084	0.84100080
c	5 00070422	0.09207904	1 28070062
C C	-0.90979400	9.29000072	1.20970003
a a	-1.01040102	9.90170220	0.10042870
C	-0.95129442	8.08315983	-1.14182901
C	-5.72159386	8.03590679	-1.36578166
C	-3.97698307	8.55862904	3.14226246
C	-5.11617184	9.22927094	3.57435393
С	-6.08719969	9.58529282	2.64062643
С	-3.81533504	8.22830486	1.79814172
С	-8.05459976	8.42663193	-1.95224106
С	-7.94888353	7.56122780	-3.03916621
\mathbf{C}	-6.73177767	6.93667078	-3.28974700
\mathbf{C}	-5.63715458	7.15563154	-2.45565581
Ν	6.71419764	-1.39696276	-0.01917515
С	9.51143646	-1.07553411	0.00333534
С	8.84749222	-1.25688624	-1.23226511
С	7.37494135	-1.42375040	-1.26821232
С	7.33036947	-1.21029305	1.23902416
Č	8.80356312	-1.04588747	1.22745585
č	10 92206192	-0.91665369	0.01492215
$\tilde{\mathbf{C}}$	11 63629150	-0.94628137	-1 20398259
c	10.06427536	112617770	2 30885002
C	0 56911610	1 20025250	2.39883092
a	9.00011019	-1.20020200	-2.41290032
C C	9.46100604	-0.80404200	2.41905055
C	10.87707090	-0.70980752	2.42890978
U N	11.59229660	-0.73471028	1.24553394
N	13.73216152	-0.58378273	0.03679499
C	13.11485672	-0.78257310	-1.20397973
C	13.07032681	-0.56852984	1.27046955
0	6.66296244	-1.18841815	2.25246215
0	6.74365234	-1.57430649	-2.29378843
0	13.68688488	-0.42322421	2.31070113
Ο	13.76875210	-0.81590980	-2.23096037
С	15.20242691	-0.40861464	0.04787390
С	15.94927406	-1.73523605	0.17224185
Н	15.46396446	0.09610675	-0.87942535

Η	15.43265343	0.24434167	0.88669193
Η	15.71927071	-2.39398718	-0.66747779
Η	17.02605247	-1.54880130	0.17362140
Η	15.69117260	-2.24418712	1.10301483
Η	11.52844715	-1.14592481	-3.32195711
Η	9.04114342	-1.41977572	-3.34787130
Η	11.40863705	-0.56934375	3.36120963
Η	8.92132092	-0.84453446	3.34530663
Η	5.45791292	-3.69951773	0.16858204
Η	3.44228530	-5.24717569	0.27263868
Η	0.95586520	-5.47775793	0.24014901
Η	-0.45368269	-3.42649746	0.01751911
Η	1.83013308	2.37142181	-0.46915686
Η	4.26803350	2.92723656	-0.46110949
Η	5.93225431	1.09262574	-0.25548270
Η	-4.71535349	6.62665033	-2.65277267
Η	-6.62713146	6.25788689	-4.12815714
Η	-8.80662823	7.38141012	-3.67585444
Η	-8.99194908	8.92869091	-1.74118817
Η	-6.98047113	10.11361599	2.95399427
Η	-5.25308704	9.47392082	4.62069988
Η	-3.20980024	8.26987553	3.85127759
Η	-2.57916784	8.66341782	-0.52070504
Η	-3.24901795	8.26422310	-2.08190370
Н	-4.49544907	5.71747208	0.05788160
Н	-0.86401474	7.05016518	-1.79791462
Н	0.06563620	4.78169918	-1.61259687
Н	-3.56820011	3.44826341	0.24290931
Н	-3.41539669	-4.11361885	0.50521380
Н	-5.13489580	-0.43035752	-0.87433082
Н	-7.36778831	-1.46055698	-0.83132577
Н	-5.64640522	-5.14106178	0.54681444
H	-8.71791553	-3.35398269	0.52082658
Н	-8.51373863	-3.87082648	-1.13291490
H	-7.45984983	-3.80899739	2.34658861
H	-7.70956230	-4.30246973	4.72537661
H	-8.68420219	-6.47369766	5.46957827
H	-9.45539570	-8.10287094	3.76015282
H	-8.83715534	-9.65732574	-1.20966780
H	-7.59239817	-9.22104836	-3.31485534
H	-6.65977383	-6.94502163	-3.72466040
H	-6.91353273	-5.18416071	-2.05110884
Н	-2.93788934	7.67321825	1.49766064

S5. COMPOUND 1 (3 A)

S5.1. General Information

SMILES	$\begin{array}{c} : \text{CCN} \\ 7c6c8c5 \end{array}$	1C(=O)c2ccc3c4c2c(ccc4C(=O)N(C3=O)c5cc6ccc[n+] ccc[n+]8[Pt]7(C#Cc9ccc(cc9)CN2c3ccccc3Sc3c2cccc3) C#Cc2ccc(cc2)CN2c3ccccc3Sc3c2cccc3)C1=O
Formula	:	$C_{70}H_{44}N_6O_4PtS_2^3$
Charge	:	
Multiplicity	:	3
Dipole	:	20.1566 Debye
Energy	:	-4240.03211474 a.u.
Number of imaginary	frequencies :	0

S5.2.	Cartesian	Co-ordinates	(XYZ	format)	

С	3.48651838	-1.47319078	-0.00844088
С	4.18767166	-0.25386605	0.08722270
С	3.48342991	0.92908823	0.14488345
С	2.08294892	0.90623540	0.10572561
Ν	1.39721906	-0.22972849	0.01657343
С	2.07770681	-1.41127789	-0.03850215
С	1.30454159	-2.61199975	-0.12889072
С	1.95425534	-3.86091614	-0.19046338
С	3.38476491	-3.90152812	-0.16480720
С	4.12237167	-2.76375508	-0.07819197
Ν	-0.05359326	-2.49235916	-0.15173878
С	-0.79567873	-3.59378505	-0.23435575
С	-0.22706631	-4.87392521	-0.29831597
С	1.14403617	-5.01262856	-0.27685010
\mathbf{Pt}	-0.72281593	-0.46970236	-0.05519190
С	-1.14754152	1.43822658	0.02646816
С	-2.63535500	-0.88319629	-0.12348045
С	-3.81931663	-1.18224776	-0.16568843
С	-1.36893809	2.63930273	0.07095255
С	-5.20368195	-1.52338469	-0.22058691
С	-1.63051867	4.03883457	0.12163530
\mathbf{C}	-5.65721464	-2.80627823	0.13502818
\mathbf{C}	-6.16725826	-0.58132219	-0.63540488
\mathbf{C}	-7.51284027	-0.91577202	-0.69058931
\mathbf{C}	-7.95724964	-2.19577599	-0.33559906
\mathbf{C}	-7.00894117	-3.13276815	0.07826369

С	-2.93744731	4.52744627	0.33037066
С	-3.19095135	5.88987494	0.37912694
С	-2.15486240	6.81937695	0.22245978
С	-0.85826385	6.34761095	0.01450479
Ċ	-0.59884548	4.98167515	-0.03519170
č	-9 45060921	-2 49575830	-0.42109400
C	2 50680700	8 20620647	0.20183206
N	-2.50080105	2 22554422	0.23103200
N	-9.90270140 1.27770014	-0.00007001	-0.04921439
N	-1.3///8804	9.23097281	0.09558287
C	-9.87058353	-4.86050320	-1.02135968
C	-10.15660763	-4.11666298	1.31198955
C	-10.98417282	-5.19229269	1.68557584
S	-11.86425781	-6.10928869	0.43512323
С	-10.66883564	-6.01176453	-0.88417929
С	-9.04250145	-5.77206898	-3.12242579
С	-9.05518436	-4.76456308	-2.15977001
С	-10.61881351	-7.03549051	-1.82724571
С	-9.81474400	-6.91709518	-2.95905256
С	-9.60591888	-3.33139420	2.33673739
С	-9.87586212	-3.60455990	3.67630076
Ċ	-10.67229557	-4.68799877	4.03133297
č	-11 21460724	-5 48733759	3 02712059
$\tilde{\mathbf{C}}$	-1 10241663	9 66373444	-1 20236361
c	0.20216100	10 70808262	1.46947062
ç	0.43571803	11.76919602	0.21850022
C C	0.43371003 0.17654120	10.70212092	1 20228200
a	0.17034130	0.0001004	1.20236209
C	-0.07727780	9.00021824	1.22372937
C	-1.40714359	9.39955807	-3.59861827
C	-0.62832868	10.54068756	-3.84687662
С	-0.07383704	11.22857285	-2.78834224
С	-1.64114451	8.96924305	-2.30941248
С	0.83474261	11.21773529	2.36824155
С	0.67367792	10.52627182	3.55020046
С	-0.14629546	9.38733101	3.57929373
С	-0.80743587	8.96222210	2.44610786
Ν	5.55747128	-2.83434486	-0.05488218
С	8.33275604	-3.00129557	-0.02034595
С	7.66909933	-2.82289577	-1.25986850
С	6.21983719	-2.72915578	-1.30439579
Č	6.17125654	-3.00605893	1.21245837
č	7 62199306	-3 09463024	1 20220876
c	0.76386261	3 08/00753	0.00232385
c	10 48103046	2 00088454	1 21885705
C	0 70015626	-2.99000404	-1.21000700
C	9.79010000	-2.01/00/2/	-2.43443231
C	0.41002907	-2.73318243	-2.40010945
C	8.32013324	-3.27098008	2.41520901
C	9.69738674	-3.35594153	2.42854333
C	10.43421459	-3.26335216	1.23125589
Ν	12.55888939	-3.23356795	0.03430712
С	11.93852043	-3.07299662	-1.21654558
С	11.89095974	-3.35197711	1.26513493
Ο	5.46889496	-3.06409216	2.22027636
Ο	5.55467272	-2.56394029	-2.32594848
Ο	12.53543663	-3.51929069	2.30325651
0	12.62205887	-3.00625110	-2.24101353
С	14.03122330	-3.30382514	0.05551532
Č	14.55463314	-4.73323584	-0.08577029
й	14 38863373	-2 68570531	-0.76550/18
н	1/ 25/20/21	_9 87296219	1 00119967
н	14 99896904	5 17/9/0912	1 0200212007
п П	15 64011020	-0.11404000	-1.02990120
п	10.04811230	-4./32/2502	-0.00908043
H TT	14.20151901	-5.35841513	0.73696285
H	10.36651802	-2.75082660	-3.34827805
Н	7.87685919	-2.59802771	-3.38590527

Η	10.23834705	-3.49320865	3.35609221
Η	7.74883032	-3.33876467	3.33228469
Η	3.88197255	-4.86207962	-0.21630044
Η	1.60605264	-5.99143696	-0.32530764
Η	-0.87744546	-5.73597860	-0.36401021
Η	-1.86737347	-3.44396496	-0.24987514
Η	1.49528039	1.81390309	0.14617167
Η	3.99357986	1.88022006	0.21914147
Η	5.26926899	-0.25513169	0.11509200
Η	-1.40040863	8.06211185	2.49657965
Η	-0.25746703	8.82354641	4.49674511
Η	1.18769956	10.85426998	4.44438028
Η	1.47577679	12.08983040	2.32391214
Η	0.54199517	12.10260391	-2.96266413
Η	-0.45178580	10.87328339	-4.86156464
Η	-1.82417059	8.83831882	-4.42509747
Η	-3.25978756	8.54750156	-0.45433775
Η	-2.95610619	8.53999519	1.25388718
Η	-4.20683002	6.23587132	0.54120851
Η	-0.03391561	7.03969431	-0.11157916
Η	0.41437158	4.63566780	-0.19930451
Η	-3.75032759	3.82238674	0.45379183
Η	-4.93873262	-3.54927754	0.46064991
Η	-5.84448290	0.41461813	-0.91465288
Η	-8.23177147	-0.16937988	-1.01537514
Η	-7.32396793	-4.13052607	0.36013293
Η	-9.99318218	-1.78487837	0.20821646
Η	-9.79258060	-2.31136632	-1.44326818
Η	-8.95264816	-2.50548649	2.09283590
Η	-9.44176769	-2.97050524	4.44062042
Η	-10.87174702	-4.91307688	5.07200480
Η	-11.84297085	-6.33365345	3.28041935
Η	-11.23367310	-7.91649580	-1.68224394
Η	-9.79595280	-7.70952320	-3.69738579
Η	-8.40845203	-5.65919352	-3.99415445
Η	-8.41602039	-3.90350580	-2.29551220
H	-2 21504426	8 06800235	-2.15788722

S5.3. TD-DFT Calculations

FIG. S9. Simulated UV-VIS spectrum for the $^3[\mathrm{NDI^-}\text{-}\mathrm{Pt}\text{-}(\mathrm{PTZ})^+]$ state of $[\mathbf{1}]$

Table with most important transitions (f > 0.04)

No	Energy	Wave length	Osc.	Major contribe
INO.	$({\rm cm}^{-1})$	(nm)	Strength	Major contribs
15	14776	676.76	0.05	$HOMO(\alpha) \rightarrow L+5(\alpha) (95\%)$
35	19833	504.22	0.09	H-2(α) \rightarrow LUMO(α) (48%), H-1(β) \rightarrow L+1(β) (26%), H-1(β) \rightarrow L+2(β) (23%)
38	20395	490.30	0.16	$H-27(\beta) \rightarrow LUMO(\beta)$ (14%), $H-25(\beta) \rightarrow LUMO(\beta)$ (78%)
46	21614	462.66	0.14	H-3(α) \rightarrow LUMO(α) (22%), H-2(β) \rightarrow L+1(β) (11%), HOMO(β) \rightarrow L+3(β) (43%)
47	21615	462.64	0.11	H-3(α) \rightarrow LUMO(α) (17%), HOMO(β) \rightarrow L+3(β) (57%)
48	22269	449.05	0.16	$\begin{array}{llllllllllllllllllllllllllllllllllll$
49	22329	447.85	0.44	$H-2(\alpha) \rightarrow L+1(\alpha)$ (37%), $HOMO(\alpha) \rightarrow L+14(\alpha)$ (33%)
50	22444	445.55	0.06	H-2(α)→L+1(α) (10%), H-1(β)→L+1(β) (26%), H- 1(β)→L+2(β) (27%), H-1(β)→L+3(β) (13%)
61	24246	412.44	0.05	$\text{H-3}(\alpha) \rightarrow \text{L+1}(\alpha) (38\%), \text{H-2}(\beta) \rightarrow \text{L+3}(\beta) (36\%)$

S5.4. Molecular Orbitals

FIG. S10. Frontier orbitals for the triplet state of [1].

S6.1. General Information

CCN1C(=O)c2ccc3c4c2c(ccc4C(=O)N(C3=O)c5cc6ccc[n+]

C#Cc2ccc(cc2)CN2c3ccccc3Sc3c2cccc3)C1=O

 $\mathrm{C}_{70}\mathrm{H}_{44}\mathrm{N}_{6}\mathrm{O}_{4}\mathrm{Pt}\mathrm{S}_{2}^{3}$

-4240.03168957 a.u.

0

3 0.0000 Debye

0

7c6c8c5ccc[n+]8[Pt]7(C#Cc9ccc(cc9)CN2c3ccccc3Sc3c2cccc3)

SMILES

Formula : Charge : Multiplicity : Dipole Energy Number of imaginary frequencies :

S6.2. Cartesian Co-ordinates (XYZ format)

127

:

:

С	3.51561379	-1.53534341	0.03161843
С	4.23418903	-0.32618085	0.12894249
С	3.54666877	0.86503643	0.21228832
С	2.14532161	0.86093897	0.19820766
Ν	1.44376910	-0.26525635	0.10740048
С	2.10741043	-1.45476890	0.02584101
С	1.31695986	-2.64430547	-0.06550156
С	1.94911301	-3.90089107	-0.15249543
С	3.37889385	-3.96043754	-0.14907411
С	4.13285351	-2.83352518	-0.06085272
Ν	-0.03979959	-2.50735831	-0.06294632
С	-0.79689103	-3.59845161	-0.14489520
С	-0.24639820	-4.88480043	-0.23405053
С	1.12294912	-5.04111528	-0.23844507
\mathbf{Pt}	-0.68081468	-0.47700787	0.07272349
С	-2.59865713	-0.85826850	0.02952719
С	-1.07605588	1.43730974	0.19835587
С	-1.28068173	2.63913369	0.27986166
С	-3.78955674	-1.13091230	-0.00231800
С	-1.51720941	4.04247761	0.38387439
С	-5.18249893	-1.42669964	-0.04401404
С	-0.56724226	4.97947264	-0.06069363
С	-2.71409464	4.53854132	0.93991715
С	-2.93852019	5.90399408	1.04451144
С	-1.98739874	6.83148193	0.60064954
С	-0.80133587	6.34715223	0.04641467
С	-6.13976288	-0.39416009	-0.13570444
С	-7.49598360	-0.67943549	-0.17737028

\mathbf{C}	-7.95337820	-2.00252676	-0.13091873
\mathbf{C}	-7.01589537	-3.03204346	-0.03908426
Č	5 65301254	2 75076380	0.00408313
č	0.00001204	2.10010000	0.00400010
Č	-2.29814529	8.31791210	0.74710445
С	-9.45324898	-2.23923230	-0.19095203
Ν	-1.29697084	9.27619648	0.28136757
Ν	-9.88585377	-3.65192533	-0.06789485
\mathbf{C}	-0.24556759	9.64198589	1.15175045
\mathbf{C}	-1 28825545	9 64456940	-1.08271921
č	0.67730710	10.84050048	1 50/36085
C C	-0.01103113	11.00250200	-1.00400900
a a	-0.03722812	11.9950600	-0.29400950
Č	0.47111940	10.83701978	0.95644349
С	1.14058840	9.21446896	3.10801482
С	0.11402308	8.83751774	2.24423885
\mathbf{C}	1.52539480	11.18708324	1.79684186
\mathbf{C}	1.85913050	10.38425064	2.88568139
\mathbf{C}	-1.89531612	8.84240055	-2.06152034
Ĉ	-1 89791322	9 22187805	-3 40239143
č	1 26546335	10 30216137	3 80814481
č	-1.20040000	11 10969417	-0.00014401
G	-0.04405119	11.19208417	-2.60100174
C	-10.13709831	-4.14688540	1.21050215
С	-10.86237335	-5.34761953	1.42796302
\mathbf{S}	-11.50314617	-6.31903124	0.13584784
\mathbf{C}	-10.75556469	-5.61827040	-1.26935673
\mathbf{C}	-10.04025459	-4.39236736	-1.23842573
\mathbf{C}	-9.94566059	-3.90411496	3.62075853
\mathbf{C}	-10.68837738	-5.07816362	3.82138300
$\tilde{\mathbf{C}}$	-11 13651752	-5 79332542	2 73105454
č	0.67505264	3 44668460	2.10100101
G	-9.07000204	-3.44000400	2.34617707
G	-10.92951905	-0.31006362	-2.47555115
C	-10.39108658	-5.82859468	-3.64750385
С	-9.65665817	-4.63266611	-3.62630105
\mathbf{C}	-9.48373032	-3.92930579	-2.45275593
Ν	5.56677103	-2.92697597	-0.05547143
\mathbf{C}	8.33660698	-3.16645551	-0.05363283
\mathbf{C}	7.66295862	-2.97457981	-1.28574538
\mathbf{C}	6.21600199	-2.84458232	-1.31356442
Ċ	6.19124603	-3.10854506	1.20514953
č	7 63874722	-3 23/55620	1 17803860
C	0.76476470	2 20202701	0.05200451
C	9.10410419	-3.29203701	1 07002500
C	10.46917248	-3.22407373	-1.27803598
C	9.76873779	-3.03431630	-2.48616385
С	8.39446259	-2.91009688	-2.49027824
\mathbf{C}	8.34654713	-3.42529631	2.38329768
\mathbf{C}	9.72070408	-3.55060768	2.37987733
\mathbf{C}	10.44480991	-3.48571539	1.17306602
Ν	12.55386066	-3.52968574	-0.05058987
\mathbf{C}	11.92324734	-3.35364318	-1.29424441
$\tilde{\mathbf{C}}$	11 89831448	-3 62028909	1 18916130
õ	5 /0006021	3 14503768	2 22112870
0	5 54944194	-0.14000100 0.67020170	2.22112010
0	0.04244104	-2.07052170	-2.32002020
0	12.55019665	-3.80362654	2.21994591
0	12.59558487	-3.31387830	-2.32747555
С	14.02295780	-3.65132475	-0.04826825
\mathbf{C}	14.49328518	-5.09883261	-0.19195917
Η	14.39089870	-3.04872608	-0.87598622
Η	14.37366867	-3.22972822	0.89147234
Н	14.13771343	-5.53068590	-1.12984943
Н	15.58620644	-5.13729906	-0.19103898
н	14 13000965	-5 7087/21/	0.63781047
н	10 33530810	2 087/5019	3 /0721716
11 U	7 95105410	-2.30140310	-0.407017110 9 /1/07670
11 11	10.00100419	-2.10239014	-0.4140/0/0
H	10.26890278	-3.09952154	3.30132198
Н	7.78511047	-3.47204995	3.30770779

Η	3.86276388	-4.92681026	-0.21706934
Η	1.57135808	-6.02504492	-0.30651805
Η	-0.90865815	-5.73791027	-0.29838234
Η	-1.86660981	-3.43510294	-0.13943389
Η	1.57030082	1.77555895	0.26114494
Η	4.07010508	1.80874240	0.28843370
Η	5.31602716	-0.34171468	0.13815092
Η	-8.88332939	-3.03287697	-2.46850467
Η	-9.20789433	-4.25647306	-4.53684616
Η	-10.52458858	-6.37338305	-4.57309437
Η	-11.48584080	-7.24550009	-2.47127175
Η	-11.69834518	-6.70943499	2.86747909
Η	-10.89843082	-5.42908096	4.82343483
Η	-9.56742668	-3.35072803	4.47084904
Η	-9.96154404	-1.68356860	0.59637266
Η	-9.86618137	-1.86314809	-1.12631667
Η	-8.20857239	0.13633071	-0.24719146
Η	-7.33610439	-4.06672096	0.00095257
Η	-4.94218302	-3.56406951	0.07676468
Η	-5.80301428	0.63453746	-0.17366695
Η	0.36026552	4.62593269	-0.49544847
Η	-3.46287704	3.83799219	1.29019606
Η	-3.86926198	6.25636482	1.47934055
Η	-0.04806924	7.04157114	-0.30646998
Η	-3.22936749	8.54072475	0.21897653
Η	-2.49188781	8.53881359	1.80050278
Η	-2.36167932	7.90833187	-1.78149903
Η	-2.38518214	8.58258343	-4.12938833
Η	-1.25138831	10.68264675	-4.85162306
Η	-0.15018457	12.11202240	-3.14427304
Η	2.06831050	12.10612774	1.60752106
Η	2.66831231	10.67272663	3.54554796
Η	1.38401115	8.57370567	3.94754887
Η	-0.40139517	7.90392685	2.42066264
Η	-9.07040977	-2.56072760	2.23136973

S7. COMPOUND 1 (³A) ALTERNATIVE ISOMER

S7.1. General Information

S7.2.	Cartesian	Co-ordinates	(XYZ	format)	
			·)	

1	2	7

С	4.29369545	-0.47953382 -0.12131557
С	4.71770954	0.85762227 - 0.26181817
С	3.77792335	1.85262322 - 0.42182925
С	2.41589952	1.52438641 - 0.44464067
Ν	1.98935235	0.27118018 - 0.31561187
С	2.90544677	-0.72732586 -0.15439130
С	2.40696597	-2.06199026 -0.01808607
С	3.30768871	-3.13208246 0.15300822
С	4.71229029	-2.85932827 0.18291070
С	5.18958330	-1.59398246 0.05111460
Ν	1.05599523	-2.24333906 -0.06070015
С	0.56738335	-3.47444963 0.06515498
С	1.39575934	-4.59220934 0.24069847
С	2.76326609	-4.42692089 0.28495702
Pt	-0.02672619	-0.42725217 -0.33839157
С	-0.84424335	1.33156884 - 0.59803224
С	-1.80580711	-1.24800467 -0.34176326
С	-2.89870930	-1.79440594 -0.34325060
С	-1.31212044	2.44971299 - 0.75315672
С	-4.17980766	-2.42243290 -0.35517806
С	-1.85276341	3.75715828 - 0.92331612
\mathbf{C}	-4.35691643	-3.73829341 0.10855444

С	-5.31626558	-1.74090803 -0.83697283
С	-6.56121111	-2.35350442 -0.85193807
\mathbf{C}	-6.72992516	-3.66476798 -0.38916978
С	-5.60940361	-4.34486866 0.09076257
С	-2.95081496	4.19484663 -0.16114141
С	-3.47411990	5.47376251 -0.32261440
Č	-2.92087984	6.35877705 -1.24938989
$\hat{\mathbf{C}}$	-1 82664120	5 93384075 -2 01312590
c	-1.30182159	4 65962601 -1 85658586
c	8 12650585	4.000002001 -1.00000000
C	2 45222108	7 76100744 1 40077009
N N	-3.43322100	5 65220762 0 02512051
IN N	-0.20120111	-5.05259705 0.05512951 9.02066502 0.51020149
N	-4.408/4019	8.23900003 -0.01939148
C	-8.03425694	-0.71304403 -0.86290354
C	-8.48259163	-5.88396549 1.41523314
C	-9.06595421	-7.08100605 1.87157130
S	-9.72658920	-8.24874306 0.69732928
С	-8.57176208	-7.99484539 -0.63723552
С	-7.02184010	-7.57590055 -2.90311599
С	-7.25182104	-6.52836657 -2.01331043
С	-8.30150414	-9.04905605 -1.50640500
С	-7.53517818	-8.84377956 -2.65189576
С	-8.11512470	-4.92996740 2.37692261
С	-8.32734776	-5.15897751 3.73503709
С	-8.87834740	-6.35846663 4.17307758
Ċ	-9.23492718	-7.32290411 3.23275256
$\tilde{\mathbf{C}}$	-4 01524019	8 87353325 0 63622761
$\hat{\mathbf{C}}$	-4 86921263	9 66110802 1 45163691
s	6 55221033	0.01715240 1.00508106
C	6 85025835	8 75004751 0 16607400
C	-0.00020000 5 01004070	0.5000472 0.0004499
C	-0.01004070	0.00299470 -0.00242007
C	-2.16990000	9.403/1227 2.14980203
C	-3.04023409	10.19940758 2.93354130
C	-4.36897755	10.32070446 2.58587480
C	-2.66227293	8.75575924 1.02771664
C	-8.19257164	8.57839203 -0.53763735
C	-8.52587318	7.69664526 -1.54391885
С	-7.51385975	6.96983337 - 2.19028258
С	-6.18966532	7.14143133 -1.84565532
Ν	6.60596704	-1.35244882 0.07818096
С	9.35476780	-0.93902141 0.13640113
С	8.72412872	-1.20139015 -1.10537398
С	7.28815842	-1.41677320 -1.16379333
С	7.18442726	-1.08136714 1.34428227
С	8.62284565	-0.87442088 1.34842145
С	10.77264690	-0.72872108 0.16674040
С	11.51080894	-0.79060560 -1.03926206
С	10.85294914	-1.05498564 -2.25682926
Ċ	9.48798084	-1.25453711 -2.29017663
$\tilde{\mathbf{C}}$	9 28792286	-0.60818380 2.56375098
$\tilde{\mathbf{C}}$	10.65330315	-0.41054723 = 2.569100000
č	11 /1000652	0.46641403 1.40280020
N	12 54011899	0.20022126 0.22527252
C	13.04011022 19.05569744	-0.50905120 0.22527250
ä	12.90002744	-0.38118745 -1.02392399
	12.00340118	-0.2000070 1.40020009 1.00046960 0.000606
0	0.40180080	
0	0.04986324	-1.64054573 -2.19106674
0	13.47122669	-0.03218164 2.49433041
0	13.65749073	-0.63085288 -2.03683567
С	14.99635029	-0.08193782 0.25718415
С	15.79020882	-1.36915684 0.48112941
Η	15.26604080	0.36931750 - 0.69529361
Η	15.18788147	0.62599969 1.06105435
Н	15.60141563	-2.08680129 -0.32009634

Η	16.86111450	-1.14785516 0.4	9514511
Η	15.52456856	-1.82761300 1.4	3588388
Η	11.44406033	-1.09653175 -3.1	6268778
Η	8.97716808	-1.45700514 -3.2	22294855
Η	11.16940022	-0.20824906 3.5	51966524
Η	8.70153427	-0.56482482 3.4	7270274
Η	5.40282917	-3.68341303 0.3	31130877
Η	3.42327905	-5.27566338 0.4	1901940
Η	0.94506186	-5.57088137 0.3	33813182
Η	-0.51024753	-3.56402421 0.0)2306094
Η	1.64875722	2.27735114 -0.5	6972241
Η	4.07287931	2.88771391 -0.5	53140903
Η	5.77365637	1.09277105 - 0.2	24359363
Η	-5.44230032	6.53893805 -2.3	33849859
Η	-7.76886797	6.25526333 -2.9	6246886
Η	-9.56273174	7.55835915 -1.8	32168615
Η	-8.96260071	9.13469410 -0.0	01703047
Η	-5.04264069	10.91891003 3.1	8726492
Η	-2.66146159	10.70556736 3.8	31200266
Η	-1.15110445	9.28336716 2.4	12963457
Η	-2.63889098	8.48551846 -1.4	7360718
Η	-3.89910483	7.84415388 -2.4	17933149
Η	-4.31766796	5.77163744 0.2	28921843
Η	-1.37940240	6.60700130 - 2.7	'3753500
Η	-0.45554054	4.34816217 -2.4	15679474
Η	-3.39185691	3.52209902 0.5	6405044
Η	-3.50126934	-4.28525162 0.4	8667046
Η	-5.20702362	-0.72594059 -1.2	20021629
Η	-7.41790581	-1.80388880 -1.2	23073936
Η	-5.71020699	-5.36041403 0.4	45502034
Η	-8.80789566	-3.65375352 0.1	5113950
Η	-8.49731255	-4.24090719 -1.4	6262431
Η	-7.64990902	-4.00412178 2.0	6906104
Η	-8.04045582	-4.39544725 4.4	4873571
Η	-9.03029919	-6.54687500 5.2	22893572
Η	-9.67131901	-8.26288700 3.5	55096030
Η	-8.71667099	-10.02759838 -1.2	29356217
Η	-7.34550095	-9.66454315 -3.3	33291650
Η	-6.42163754	-7.39355516 -3.7	'8694820
Η	-6.80811548	-5.56368113 -2.2	21534777
Η	-1.98908329	8.12419605 0.4	6906835

S7.3. TD-DFT Calculations

Table with most important transitions for alternative Triplet state $\left(f>0.04\right)$

No.	$\frac{\text{Energy}}{(\text{cm}^{-1})}$	Wave length (nm)	Osc. Strength	Major contributions
15	14774	676.88	0.05	$HOMO(\alpha) \rightarrow L+5(\alpha) (97\%)$
35	19957	501.08	0.09	H-2(α)→LUMO(α) (48%), H-1(β)→L+1(β) (26%), H-1(β)→L+2(β) (22%)
37	20383	490.62	0.16	$H-2\ddot{6}(\beta) \rightarrow LU\dot{M}\dot{O}(\beta)$ (16%), $H-25(\beta) \rightarrow LUMO(\beta)$ (76%)
47	21880	457.03	0.22	H-3(α) \rightarrow LUMO(α) (37%), H-3(β) \rightarrow L+1(β) (17%), H-3(β) \rightarrow L+2(β) (18%)
48	22342	447.59	0.62	$\begin{array}{l} \text{H-2}(\alpha) \rightarrow \text{L+1}(\alpha) \ (11\%), \text{ HOMO}(\alpha) \rightarrow \text{L+14}(\alpha) \ (47\%), \\ \text{H-2}(\beta) \rightarrow \text{L+1}(\beta) \ (10\%), \text{ H-1}(\beta) \rightarrow \text{L+3}(\beta) \ (13\%) \end{array}$

FIG. S11. Simulated UV-VIS spectrum for the alternative $^3[\rm NDI^--Pt-(PTZ)^+]$ state of [1]

S8.1. General Information

FIG. S12. UV-VIS spectra for the lowest singlet [Panel (a)] and triplet states [Panel (b)] for the Chromophoric Core, (phen)Pt(-CC-Ph)₂

SMILES	: $c1ccc(cc1)C\#C[Pt]2([n+]3cccc4c3c5[n+]2cccc5cc4)C\#Cc6ccccc6$	
Formula	: $C_{28}H_{18}N_2Pt$	
Charge	: 0	
Multiplicity	: 1	
Dipole	: 0.0000	Debye
Energy	: -1306.99762925	a.u.
Number of imaginary frequencies	0	

S8.2. Cartesian Co-ordinates (XYZ format)

\mathbf{C}	0.00000000	4.40913820	1.42078400
\mathbf{C}	0.00000000	4.34544611	2.83011293
\mathbf{C}	0.00000000	3.11547899	3.45208502
\mathbf{C}	0.00000000	1.94655001	2.67741299
Ν	0.00000000	1.97786903	1.34744096

\mathbf{C}	0.00000000	3.18709302	0.71570700
С	0.00000000	3.18706298	-0.71590900
С	0.00000000	4.40907812	-1.42102897
С	0.00000000	5.63757706	-0.68029702
С	0.00000000	5.63760519	0.68000799
Ν	0.00000000	1.97781205	-1.34759700
С	0.00000000	1.94643700	-2.67756796
С	0.00000000	3.11533308	-3.45228100
С	0.00000000	4.34532595	-2.83035493
Pt	0.00000000	0.32147199	-0.00004800
С	0.00000000	-1.06524396	1.38211703
С	0.00000000	-1.06528401	-1.38216603
С	0.00000000	-1.90299499	-2.27166605
С	0.00000000	-1.90287805	2.27169299
С	0.00000000	-2.88747406	-3.30545497
С	0.00000000	-2.88720989	3.30562997
С	0.00000000	-2.58330011	-4.60784006
С	0.00000000	-4.19412899	-3.05003500
С	0.00000000	-5.15244579	-4.05780220
С	0.00000000	-4.83556318	-5.34263897
С	0.00000000	-3.54689193	-5.61075020
С	0.00000000	-4.19412804	3.05043888
С	0.00000000	-5.15229607	4.05835676
С	0.00000000	-4.83499384	5.34312105
С	0.00000000	-3.54605603	5.61101007
С	0.00000000	-2.58261490	4.60794497
Η	0.00000000	0.96266103	-3.12875104
Η	0.00000000	3.03142810	-4.53085518
Η	0.00000000	5.26115084	-3.40944910
Η	0.00000000	6.57117081	-1.23025799
Η	0.00000000	6.57122278	1.22993696
Η	0.00000000	5.26129723	3.40917301
Η	0.00000000	3.03162003	4.53066206
Η	0.00000000	0.96279299	3.12863207
Η	0.00000000	-4.44459915	2.05370212
Η	0.00000000	-1.58335102	4.82088900
Η	0.00000000	-3.28998995	6.60612392
Η	0.00000000	-5.58404684	6.12658119
Η	0.00000000	-6.15165520	3.83999109
Η	0.00000000	-1.58424699	-4.82096577
Η	0.00000000	-4.44428205	-2.05324197
Η	0.00000000	-6.15159512	-3.83925796
Η	0.00000000	-5.58473396	-6.12597799
Η	0.00000000	-3.29114604	-6.60591984

S9. CHROMOPHORIC CORE, (phen)PT(-CC-Ph)₂ (T₁)

S9.1. General Information

S9.2. Cartesian Co-ordinates (XYZ format)

49

SMILES

Formula

Charge

Dipole

Energy

Multiplicity

С	0.00000000	-4.43768311	1.39463997
С	0.00000000	-4.39358282	2.78516698
С	0.00000000	-3.14496708	3.43526912
С	0.00000000	-1.98245203	2.68507099
Ν	0.00000000	-1.97980297	1.33739102
С	0.00000000	-3.20406508	0.67518598
С	0.00000000	-3.18479490	-0.72134697
С	0.00000000	-4.39813089	-1.47191000
С	0.00000000	-5.63532686	-0.73364300
С	0.00000000	-5.65426493	0.62501597
Ν	0.00000000	-1.94123495	-1.35136199
С	0.00000000	-1.90999496	-2.70409012
\mathbf{C}	0.00000000	-3.05096507	-3.47990894
С	0.00000000	-4.31944180	-2.86100006
\mathbf{Pt}	0.00000000	-0.34205699	0.00768000
С	0.00000000	1.01319695	1.38096797
С	0.00000000	1.05018604	-1.35874295
С	0.00000000	1.91906905	-2.22838902
С	0.00000000	1.87551200	2.26788712
С	0.00000000	2.91953206	-3.23006606
С	0.00000000	2.86393690	3.26743889
С	0.00000000	4.28886509	-2.87958097
С	0.00000000	2.57480788	-4.60061979
C	0.00000000	3.56179905	-5.57608080

С	0.00000000	4.91087294	-5.21309090
С	0.00000000	5.26835108	-3.86256909
С	0.00000000	2.51086998	4.63999510
С	0.00000000	3.49367595	5.61599922
С	0.00000000	4.84470320	5.25361681
С	0.00000000	5.21107388	3.90379095
С	0.00000000	4.23784781	2.91820908
Η	0.00000000	-0.92361301	-3.14843297
Η	0.00000000	-2.95671606	-4.55786991
Η	0.00000000	-5.22541285	-3.45568705
Η	0.00000000	-6.56411886	-1.29377198
Η	0.00000000	-6.59797812	1.15960002
Η	0.00000000	-5.31477404	3.35626698
Η	0.00000000	-3.07679105	4.51510715
Η	0.00000000	-1.00886297	3.15722704
Η	0.00000000	1.46318495	4.91346121
Η	0.00000000	4.51178885	1.87068295
Η	0.00000000	6.25871181	3.62726998
Η	0.00000000	5.60974884	6.02109718
Η	0.00000000	3.21421909	6.66285515
Η	0.00000000	4.56240511	-1.83159900
Η	0.00000000	1.52844095	-4.88044691
Η	0.00000000	3.28247690	-6.62337494
Η	0.00000000	5.67872620	-5.97793198
Η	0.00000000	6.31450796	-3.57898688